Рубрика: 
УДК: 
519.853
Язык публикации: 
русский

О ВНУТРЕННЕЙ ОЦЕНКЕ ВЫПУКЛОГО ТЕЛА ЛЕБЕГОВЫМ МНОЖЕСТВОМ ВЫПУКЛОЙ ДИФФЕРЕНЦИРУЕМОЙ ФУНКЦИИ

Аннотация: 

Рассматривается конечномерная задача о вложении наибольшего по включению нижнего Лебегова множества выпуклой функции f(x) в заданное выпуклое тело D ⊂ R p . Эта задача являетсяобобщением задачи о вписанном шаре (случай, когда  функция является некоторой нормой, а ее лебеговы множества — шары). Функция f(x) должна быть дифференцируемой всюду на R p , за исключением, возможно, точки 0 p , и иметь ее в качестве единственной точки минимума. Математическая формализация этой задачи предложена в форме отыскания максимина от функции разности аргументов. Доказано, что целевая функция данной максиминной задачи является липшицевой на R p и квазивогнутой на множестве D. Кроме того, установлено, что целевая функция супердифференцируема (в смысле определения Демьянова–Рубинова) на внутренности тела D и получена соответствующая формула супердифференциала. На основе этой формулы супердифференциала получены необходимое и достаточное условие решения задачи и условие единственности решения.

DOI: 
10.18500/1816-9791-2017-17-3-267-275
Библиографический список

1. Дудов С. И. Внутренняя оценка выпуклого множества телом нормы // Журн. вычисл. матем. и матем. физ. 1996. Т. 36, № 5. С. 153–159.
2. Демьянов В. Ф., Малоземов В. Н. Введение в минимакс. М. : Наука, 1972. 368 с.
3. Демьянов В. Ф. Минимакс : дифференцируемость по направлениям. Л. : Изд-во ЛГУ, 1974. 112 с.
4. Федоров В. В. Численные методы максимина. М. : Наука, 1979. 280 с.
5. Сухарев А. Г., Федоров В. В. Минимаксные задачи и минимаксные аглгоритмы. М. : Изд-во Моск. ун-та, 1979. 50 с.

6. Дудов С. И. Необходимые и достаточные условия максимина функции разности аргументов // Журн. вычисл. матем. и матем. физ. 1992. Т. 32, № 12. С. 1869–1884.
7. Демьянов В. Ф., Васильев Л. В. Недифференцируемая оптимизация. М. : Наука, 1981. 384 с.
8. Демьянов В. Ф., Рубинов А. М. Основы негладкого анализа и квазидифференциальное исчисление. М. : Наука, 1990. 432 с.
9. Дудов С. И. Субдифференцируемость и супердифференцируемость функции расстояния // Матем. заметки. 1997. Т. 61, № 4. С. 530–542. DOI: doi.org/10.4213/mzm1532.
10. Кларк Ф. Оптимизация и негладкий анализ. М. : Наука, 1988. 280 с.
11. Половинкин Е. С. Многозначный анализ и дифференциальные включения. М. : Физмалит, 2015. 524 с.
12. Васильев Ф. П. Методы оптимизации : в 2 кн. Кн. 2. М. : МЦНМО, 2011. 434 с.

Полный текст в формате PDF: