Рубрика: 
УДК: 
519.853
Язык публикации: 
английский

ОБ УСТОЙЧИВОСТИ ПО ФУНКЦИОНАЛУ РЕШЕНИЯ ЗАДАЧИ О НАИЛУЧШЕМ ПРИБЛИЖЕНИИ ВЫПУКЛОГО ТЕЛА ШАРОМ ФИКСИРОВАННОГО РАДИУСА

Аннотация: 

Рассматривается конечномерная задача о равномерной оценке (наилучшем приближении) в метрике Хаусдорфа выпуклого тела шаром произвольной нормы с фиксированным радиусом. Известно, что в случае, когда оцениваемое тело и шар используемой нормы являются многогранниками, данная задача может быть сведена к задаче линейного программирования. Это позволяет предложить метод получения приближенного решения задачи на основе предварительной аппроксимации тела и единичного шара нормы многогранниками. В связи с этим в статье получена оценка устойчивости (чувствительности) оптимального значения целевой функции задачи к погрешности аппроксимации оцениваемого выпуклого тела и единичного шара используемой нормы.

DOI: 
10.18500/1816-9791-2015-15-3-273-279
Библиографический список
  1. Никольский M. C., Силин Д. Б. О наилучшем приближении выпуклого компакта элементами аддиала // Тр. МИАН. 1995. Т. 211. С. 338–354.
  2. Дудов C. И., Златорунская И. В. Равномерная оценка выпуклого компакта шаром произвольной нормы // Матем. сб. 2000. Т. 191, № 10. C. 13–38. DOI: 10.4213/sm513.
  3. Дудов C. И. Взаимосвязь некоторых задач по оценке выпуклого компакта шаром // Матем. сб. 2007. Т. 198, № 1. C. 43–58. DOI: 10.4213/sm1479.
  4. Дудов C. И., Осипцев М. А. О подходе к приближенному решению задачи наилучшего приближения выпуклого тела шаром фиксированного радиуса // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2014. Т. 14, вып. 3. С. 267–272.
  5. Карманов В. Г. Математическое программирование. М. : Наука, 2000.
  6. Васильев Ф. П. Методы оптимизации. М. : МЦНМО, 2011.
  7. Измайлов А. Ф. Чувствительность в оптимизации. М. : Физматлит, 2006.
  8. Пшеничный Б. Н. Выпуклый анализ и экстремальные задачи. М. : Наука, 1980.
  9. Демьянов В. Ф., Васильев Л. В. Недифференцируемая оптимизация. М. : Наука, 1981.

 

Полный текст в формате PDF: