Известия Саратовского университета. Новая серия.

Серия Математика. Механика. Информатика

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Для цитирования:

Козлов Е. А., Челноков Ю. Н., Панкратов И. А. Решение задачи оптимальной коррекции угловых элементов орбиты космического аппарата с использованием кватернионного уравнения ориентации орбиты // Известия Саратовского университета. Новая серия. Серия : Математика. Механика. Информатика. 2016. Т. 16, вып. 3. С. 336-344. DOI: 10.18500/1816-9791-2016-16-3-336-344, EDN: WMIIJF

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
14.09.2016
Полный текст:
(downloads: 155)
Язык публикации: 
русский
Рубрика: 
УДК: 
629
EDN: 
WMIIJF

Решение задачи оптимальной коррекции угловых элементов орбиты космического аппарата с использованием кватернионного уравнения ориентации орбиты

Авторы: 
Козлов Евгений Александрович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Челноков Юрий Николаевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Панкратов Илья Алексеевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

В статье рассмотрена задача оптимальной коррекции угловых элементов орбиты космического аппарата. Управление (вектор реактивной тяги, ортогональной плоскости орбиты) ограничено по модулю. Комбинированный функционал качества характеризует затраты времени и энергии на процесс управления. С помощью принципа максимума Понтрягина и кватернионного дифференциального уравнения ориентации орбиты космического аппарата сформулирована дифференциальная краевая задача коррекции угловых элементов орбиты космического аппарата. Приведены закон оптимального управления, условия трансверсальности, не содержащие неопределенных множителей Лагранжа. Построены примеры численного решения задачи. 

Список источников: 
  1. Понтрягин Л. С., Болтянский В. Г., Гамкрелидзе Р. В., Мищенко Е. Ф. Математическая теория оптимальных процессов. М. : Наука, 1983. 393 с.
  2. Челноков Ю. Н. Оптимальная переориентация орбиты космического аппарата посредством реактивной тяги, ортогональной плоскости орбиты // Прикладная математика и механика. 2012. Т. 76, вып. 6. С. 895–912.
  3. Панкратов И. А., Сапунков Я. Г., Челноков Ю. Н. Об одной задаче оптимальной переориентации орбиты космического аппарата // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2012. Т. 12, вып. 3. С. 87–95.
  4. Абалакин В. К., Аксенов Е. П., Гребенников Е. А., Демин В. Г., Рябов Ю. А. Справочное руководство по небесной механике и астродинамике. М. : Наука, 1976. 864 с.
  5. Челноков Ю. Н. Кватернионные и бикватернионные модели и методы механики твердого тела и их приложения. Геометрия и кинематика движения. М. : ФИЗМАТЛИТ, 2006. 512 с.
  6. Deprit A. Ideal frames for perturbed keplerian motions // Celestial Mechanics. 1976. Vol. 13, № 2. P. 253–262.
  7. Брумберг В. А. Аналитические алгоритмы небесной механики. М. : Наука, 1980. 208 с.
  8. Chelnokov Yu. N., Pankratov I. A., Sapunkov Ya. G. Optimal reorientation of spacecraft orbit // Archives of Control Sciences. 2014. Vol. 24, № 2. P. 119–128.
  9. Бранец В. Н., Шмыглевский И. П. Применение кватернионов в задачах ориентации твердого тела. М. : Наука, 1973. 320 с.
  10. Моисеев Н. Н. Численные методы в теории оптимальных систем. М. : Наука, 1971. 424 с.
  11. Бордовицына Т. В. Современные численные методы в задачах небесной механики. М. : Наука, 1984. 136 с.
Поступила в редакцию: 
16.04.2016
Принята к публикации: 
26.08.2016
Опубликована: 
30.09.2016