Образец для цитирования:

Корнев В. В., Хромов А. П. Резольвентный подход к методу Фурье в смешанной задаче для неоднородного волнового уравнения // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2016. Т. 16, вып. 4. С. 403-412. DOI: https://doi.org/10.18500/1816-9791-2016-16-4-403-413


Рубрика: 
УДК: 
517.95; 517.984
Язык публикации: 
русский

Резольвентный подход к методу Фурье в смешанной задаче для неоднородного волнового уравнения

Аннотация: 

Дается обоснование метода Фурье при получении классического решения в смешанной задаче для неоднородного волнового уравнения с комплексным потенциалом и закрепленными краевыми условиями при минимальных требованиях на начальные данные. Используемый резольвентный подход не требует никакой информации о собственных и присоединенных функциях соответствующей спектральной задачи.

Библиографический список

1. Бурлуцкая М. Ш., Хромов А. П. Резольвентный подход в методе Фурье // Докл. АН. 2014. Т. 458, № 2. С. 138–140. DOI: 10.7868/S086956 5214260041.

2. Бурлуцкая М. Ш., Хромов А. П. Резольвентный подход для волнового уравнения // Журн. вычисл. матем. и матем. физ. 2015. Т. 55, № 2. С. 229–241. DOI: 10.7868/S0044466915020052.

3. Корнев В. В., Хромов А. П. Резольвентный подход к методу Фурье в одной смешанной задаче для волнового уравнения // Журн. вычисл. матем. и матем. физ. 2015. Т. 55, № 4. С. 621–630. DOI: 10.7868/S0044466915040079.

4. Корнев В. В., Хромов А. П. Резольвентный подход в методе Фурье для волнового уравнения в несамосопряженном случае // Журн. вычисл. матем. и матем. физ. 2015. Т. 55, № 7. С. 1156–1167.

5. Петровский И. Г. Лекции об уравнениях с частными производными. М. : Физматгиз, 1961. 400 с.

6. Чернятин В. А. Обоснование метода Фурье в смешанной задаче для уравнений в частных производных. М. : Изд-во Моск. ун-та, 1991. 112 с.

7. Расулов М. Л. Метод контурного интеграла. М. : Наука, 1964. 462 с.

8. Вагабов А. И. Введение в спектральную теорию дифференциальных операторов. Ростов н/Д : Изд- во Рост. ун-та, 1994. 160 с. 

Полный текст в формате PDF: