банахово пространство

ЛИНЕЙНЫЕ РАЗНОСТНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА В БАНАХОВОМ ПРОСТРАНСТВЕ И РАСЩЕПЛЕНИЕ ОПЕРАТОРОВ

В классических учебниках по дифференциальным и разностным уравнениям описан прием сведения дифференциальных и разностных уравнений n-го порядка стандартной заменой к системе дифференциальных и соответственно разностных уравнений первого порядка. Каждое из этих уравнений можно записать в операторном виде. Естественным образом возникает вопрос о совпадении ряда свойств дифференциальных и разностных уравнений (операторов) второго порядка и соответству-ющих операторных уравнений (операторов) первого порядка.

ГАРМОНИЧЕСКИЙ АНАЛИЗ ПЕРИОДИЧЕСКИХ НА БЕСКОНЕЧНОСТИ ФУНКЦИЙ В ПРОСТРАНСТВАХ СТЕПАНОВА

В статье рассматриваются пространства Степанова функций, определенных на R со значениями в комплексном банаховом пространстве. Вводятся понятия медленно меняющихся и периодических на бесконечности функций из пространства Степанова. Основные результаты статьи связаны с гармоническим анализом периодических на бесконечности функций из пространства Степанова. Вводится понятие обобщенного ряда Фурье, коэффициенты которого являются медленно меняющимися на бесконечности функциями (не обязательно постоянными).

О гармоническом анализе периодических на бесконечности функций

В работе изучаются медленно меняющиеся и периодические на бесконечности функции нескольких переменных со значениями в банаховом пространстве. Вводится понятие ряда Фурье периодической на бесконечности функции, изучаются свойства рядов Фурье и вопросы сходимости. Основные результаты статьи получены с существенным использованием теории изометрических представлений. 

Теорема Винера для периодических на бесконечности функций

 В данной работе определяется банахова алгебра периодических на бесконечности функций. Для таких функций вводится понятие рядаФурье и его абсолютной сходимости. Получен аналог теоремы Винера об абсолютно сходящихся рядах Фурье для периодических на бесконечности функций. 

О структуре оператора, обратного к интегральному оператору специального вида

В статье рассматривается алгебра с единицей, порожденная интегральными операторами, действующими в пространствах непрерывных периодических функций. Доказывается наполненность этой подалгебры в алгебре всех линейных ограниченных операторов.