кратная полнота

О КРАТНОЙ ПОЛНОТЕ КОРНЕВЫХ ФУНКЦИЙ ПУЧКОВ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

Рассматривается класс пучков обыкновенных дифференциальных операторов n-го порядка с постоянными коэффициентами. Предполагается, что корни характеристического уравнения пучков этого класса лежат на одной прямой, проходящей через начало координат, таким образом, что один корень лежит по одну сторону от начала координат, а остальные по другую сторону. Описываются случаи, когда система корневых функций m-кратно (3 ≤ m ≤ n − 1) полна в пространстве суммируемых с квадратом функций на основном отрезке.

КРАТНАЯ НЕПОЛНОТА СИСТЕМЫ СОБСТВЕННЫХ ФУНКЦИЙ ОДНОГО КЛАССА ПУЧКОВ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ

Рассматривается класс пучков обыкновенных дифференциальных операторов n-гопорядка с постоянными коэффициентами. Предполагается,что корни характеристического уравнения пучков этого класса лежат на одной прямой, проходящей через начало координат. Главное предположение состоит в том, что порождающие функции для системы собственных и присоединенных функций являются линейными комбинациями экспонент.

О КРАТНОЙ ПОЛНОТЕ КОРНЕВЫХ ФУНКЦИЙ ОДНОГО КЛАССА ПУЧКОВ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

Рассматривается класс пучков обыкновенных дифференциальных операторов n-го порядка с постоянными коэффициентами. Предполагается, что корни характеристического уравнения пучков этого класса простые, отличные от нуля, и лежат на одной прямой, проходящей через начало координат. Формулируются достаточные условия n-кратной полноты системы корневых функций пучков этого класса в пространстве суммируемых с квадратом функций на основном отрезке.