монотонные функции.

О ГЕОМЕТРИЧЕСКИХ СВОЙСТВАХ НЕПРЕРЫВНЫХ ОТОБРАЖЕНИЙ, СОХРАНЯЮЩИХ ОРИЕНТАЦИЮ СИМПЛЕКСОВ

Несложно показать, что если непрерывное и открытое отображение сохраняет ориентацию всех симплексов, то оно является аффинным. В статье рассматривается класс непрерывных, открытых отображений f : D ⊂ R m → R n , сохраняющих ориентацию симплексов из заданного подмножества множества симплексов с вершинами в области D ⊂ R m . В работе исследуются вопросы геометрического строения линейных прообразовтаких отображений.