резольвента

ТЕОРЕМА РАВНОСХОДИМОСТИ ДЛЯ ИНТЕГРАЛЬНОГО ОПЕРАТОРА С ИНВОЛЮЦИЕЙ

В статье рассматривается интегральный оператор, ядро которого имеет разрывы первого рода на линиях t = x и t = 1 − x. Установлена равносходимость разложений в ряд Фурье произвольной интегрируемой функцииf(x) по собственным и присоединенным функциям рассматриваемого оператора и разложений линейной комбинации функций f(x) и f(1 − x) по обычной тригонометрической системе. Для исследования равносходимости привлекается прием, основанный на методе Коши–Пуанкаре интегрирования резольвенты по спектральному параметру. Доказательства широко используют приемы, разработанные А. П.

ПРИБЛИЖАЮЩИЕ СВОЙСТВА СТЕПЕНЕЙ РЕЗОЛЬВЕНТЫ ОПЕРАТОРА ДИФФЕРЕНЦИРОВАНИЯ

Построены семейства операторов и исследованы их аппроксимирующие свойства в задаче приближения производных функций и в задаче приближения гладких решений интегральных уравнений.

ПРИБЛИЖЕННОЕ РЕШЕНИЕ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ДЛЯ ЛИНЕЙНОЙ НЕОДНОРОДНОЙ СИСТЕМЫ В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ

Для задачи оптимального управления с линейным дифференциальным уравнением в гильбертовом пространстве и квадратичным функционалом получены необходимые и достаточные условия оптимальности управлений и приближенные формулы их разложений в ряд по собственным и присоединенным элементам оператора, входящего в это уравнение.

ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ СОБСТВЕННЫХ ЧИСЕЛ ДИСКРЕТНОГО ОПЕРАТОРА С ПОМОЩЬЮ СПЕКТРАЛЬНЫХ СЛЕДОВ СТЕПЕНЕЙ ЕГО РЕЗОЛЬВЕНТЫ

Пусть дискретный самосопряженный оператор T действует в сепарабельном гильбертовом пространстве и имеет ядерную резольвенту, причем собственные числа и собственные функции оператора T известны. В работе рассмотрен метод вычисления собственных чисел возмущенного оператора T + P, если резольвента этого оператора представима в виде сходящегося ряда Неймана по собственным функциям оператора T.

РЕЗОЛЬВЕНТНЫЙ ПОДХОД К МЕТОДУ ФУРЬЕ В СМЕШАННОЙ ЗАДАЧЕ ДЛЯ НЕОДНОРОДНОГО ВОЛНОВОГО УРАВНЕНИЯ

Дается обоснование метода Фурье при получении классического решения в смешанной задаче для неоднородного волнового уравнения с комплексным потенциалом и закрепленными краевыми условиями при минимальных требованиях на начальные данные. Используемый резольвентный подход не требует никакой информации о собственных и присоединенных функциях соответствующей спектральной задачи.

ОБОСНОВАНИЕ МЕТОДА ФУРЬЕ В СМЕШАННОЙ ЗАДАЧЕ ДЛЯ ВОЛНОВОГО УРАВНЕНИЯ С НЕНУЛЕВОЙ НАЧАЛЬНОЙ СКОРОСТЬЮ

В статье методом контурного интегрирования резольвенты оператора, порожденного спектральной задачей, соответствующей смешанной задаче для волнового уравнения с комплексным потенциалом, дается обоснование метода Фурье двух смешанных задач с нулевой начальной функцией и ненулевой начальной скоростью. Краевые условия таковы, что эти две задачи вместе со смешанной задачей с закрепленными концами исчерпывают весь класс смешанных задач с указанными начальными условиями, для которых оператор соответствующей спектральной задачи в методе Фурье имеет регулярные краевые условия.

О БАЗИСАХ РИССА ИЗ СОБСТВЕННЫХ ФУНКЦИЙ ДИФФЕРЕНЦИАЛЬНОГО ОПЕРАТОРА ВТОРОГО ПОРЯДКА С ИНВОЛЮЦИЕЙ И ИНТЕГРАЛЬНЫМИ КРАЕВЫМИ УСЛОВИЯМИ

Для дифференциального оператора второго порядка с инволюцией в производных и интегральными краевыми условиями доказана базисность Рисса со скобками собственных и присоединенных функций. Для доказательства осуществляется сведение спектральной задачи исходного оператора к спектральной задаче для оператора первого порядка в пространстве вектор-функций размерности четыре,не содержащего инволюцию.

О СХОДИМОСТИ СРЕДНИХ РИССА РАЗЛОЖЕНИЙ ПО СОБСТВЕННЫМ И ПРИСОЕДИНЕННЫМ ФУНКЦИЯМ ИНТЕГРАЛЬНОГО ОПЕРАТОРА С ЯДРОМ, ИМЕЮЩИМ СКАЧКИ НА ЛОМАНЫХ ЛИНИЯХ

В настоящей работе найдены необходимые и достаточные условия равномерной сходимости обобщенных средних Рисса разложений по собственным и присоединенным функциям(с.п.ф.) интегрального оператора, ядро которого терпит скачки на сторонах квадрата, вписанного в единичный квадрат. 

ИНТЕГРАЛЬНЫЙ ОПЕРАТОР С НЕГЛАДКОЙ ИНВОЛЮЦИЕЙ

Для интегрального оператора с негладкой инволюцией установлена равносходимость разложений по собственным и присоединеннымфункциям и в обычный тригонометрический ряд Фурье.

Страницы