рост коразмерностей

О ПОЧТИ НИЛЬПОТЕНТНЫХ МНОГООБРАЗИЯХ С ЦЕЛОЙ ЭКСПОНЕНТОЙ

Исследуются почти нильпотентные многообразия алгебр над полем нулевой характеристики. Ранее в классе алгебр, удовлетворяющих тождественному соотношению x(yz) ≡ 0, и в классе коммутативных метабелевых алгебр были определены дискретные серии многообразий экспоненциального роста с целойэкспонентой.Для данных многообразий удалось доказать только существование почти нильпотентных подмногообразий.