Образец для цитирования:

Гребенникова И. В., Кремлёв А. Г. Аппроксимация управления сингулярно возмущенной системой с запаздыванием при геометрических ограничениях // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2015. Т. 15, вып. 2. С. 142-150. DOI: https://doi.org/10.18500/1816-9791-2015-15-2-142-151


Рубрика: 
УДК: 
517.977
Язык публикации: 
русский

Аппроксимация управления сингулярно возмущенной системой с запаздыванием при геометрических ограничениях

Аннотация: 

Рассматривается задача управления по минимаксному критерию для сингулярно возмущенной системы с запаздыванием по быстрым и медленным переменным при неопределенных начальных условиях и геометрических ограничениях на ресурсы управления. Формулируется предельная задача, для которой специальным образом выбирается функционал качества. Предлагается процедура построения начального приближения управляющего воздействия в минимаксной задаче управления.

Библиографический список
  1. Красовский Н. Н. Теория управления движением. М. : Наука, 1968. 475 с.
  2. Куржанский А. Б. Управление и наблюдение в условиях неопределенности. М. : Наука, 1977. 392 с.
  3. Кремлёв А. Г. Асимптотические свойства ансамбля траекторий сингулярно возмущенной системы в задаче оптимального управления // Автомат. и телемех. 1993. № 9. С. 61–78.
  4. Гребенникова И. В. Аппроксимация решения в минимаксной задаче управления сингулярно возмущенной системой с запаздыванием // Изв. вузов. Математика. 2011. № 10. С. 28–39.
  5. Гребенникова И. В. Задача оптимального управления сингулярно возмущенной системой с запаздыванием при интегральных квадратичных ограничениях // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2012. Т. 12, вып. 4. С. 3–11.
  6. Кремлёв А. Г., Гребенникова И. В. Об асимптотике ансамбля траекторий управляемой сингулярно возмущенной системы с запаздыванием // Новости научной мысли – 2006 : материалы науч.- практ. конф. : в 4 т. Днепропетровск : Наука и образование, 2006. T. 4. С. 65–69.
  7. Рокафеллар Р. Выпуклый анализ. М. : Мир, 1973. 492 с.
  8. Красовский Н. Н. Некоторые задачи теории устойчивости движения. М. : Физматгиз, 1959. 468 с.
  9. Кириллова Ф. М. Относительная управляемость линейных динамических систем с запаздыванием // Докл. АН СССР. 1967. Т. 174, № 6. С. 1260–1263.
  10. Беллман Р., Кук К. Дифференциально-разностные уравнения. М. : Мир, 1967. 547 с.
  11. Натансон И. П. Теория функций вещественной переменной. М. : Наука, 1974. 468 с.
Полный текст в формате PDF: