Образец для цитирования:

Шарапудинов И. И., Акниев Г. Г. ДИСКРЕТНЫЕ ПРЕОБРАЗОВАНИЯ СО СВОЙСТВОМ ПРИЛИПАНИЯ НА ОСНОВЕ СИСТЕМЫ {sin x sin kx} И СИСТЕМЫ ПОЛИНОМОВ ЧЕБЫШЁВА ВТОРОГО РОДА // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика.2014 Т. 14, вып. 4. С. 413-?. DOI: ?


Рубрика: 
УДК: 
517.538

ДИСКРЕТНЫЕ ПРЕОБРАЗОВАНИЯ СО СВОЙСТВОМ ПРИЛИПАНИЯ НА ОСНОВЕ СИСТЕМЫ {sin x sin kx} И СИСТЕМЫ ПОЛИНОМОВ ЧЕБЫШЁВА ВТОРОГО РОДА

Аннотация: 

В настоящей статье вводятся дискретные ряды со свойством «прилипания» для периодического (по системе {sin x sin kx}) и непереодического (по системе полиномов Чебышёва второго рода Uk(x)) случаев. Показано, что дискретные ряды со свойством прилипания по системе {sin x sin kx} выгодно отличаются от косинус-рядов Фурье тем, что их частичные суммы вблизи границ отрезка [0, π] обладают значительно лучшими аппроксимативными свойствами. Аналогично, дискретные ряды со свойством прилипания по системе Uk(x) вблизи границ отрезка [−1, 1] приближают исходную функцию значительно лучше, чем суммы Фурье по полиномам Чебышёва первого рода.

Библиографический список

1. Шарапудинов И. И. Предельные ультрасферические ряды и их аппроксимативные свойства // Ма- тем. заметки. 2013. Т. 94, вып.

2. С. 295-309. DOI: 10.4213/mzm10292. 2. Шарапудинов И.И. Некоторые специальные ряды по ультрасферическим полиномам и их аппроксимативные свойства // Изв. РАН. Сер. матем. 2014. Т. 78, № 5. С. 201–224. DOI: 10.4213/im8117.

3. Дедус Ф. Ф., Махортых С. А., Устинин М. Н., Дедус А. Ф. Обобщенный спектрально-аналитический метод обработки информационных массивов. Задачи анализа изображений и распознавания образов. М. : Машиностроение, 1999.

4. Пашковский С. Вычислительные применения многочленов и рядов Чебышёва. М. : Наука, 1983.

5. Арушанян О. Б., Волченскова Н. И., Залеткин С. Ф. О вычислении коэффициентов рядов Чебышёва для решений обыкновенных дифференциальных уравнений // Сиб. электрон. матем. изв. 2011. Т. 8. С. 273–283.

6. Trefethen L. N. Spectral methods in Matlab. Fhiladelphia : SIAM, 2000.

7. Trefethen L. N. Finite difference and spectral methods for ordinary and partial differential equation. Cornell University, 1996.

8. Mukundan R., Ramakrishnan K. R. Moment functions in image analysis. Theory and Applications. Singapore : World Scientific, 1998.

Полный текст в формате PDF: