Математика

ОБОСНОВАНИЕ МЕТОДА ФУРЬЕ В СМЕШАННЫХ ЗАДАЧАХ С ИНВОЛЮЦИЕЙ

В работе исследуется смешанная задача для дифференциального уравнения первого порядка с инволюцией. Приводится обоснование применения методаФурье на основе полученных уточненных асимптотических формул для собственных значений и собственных функций соответствующей спектральной задачи. Использованы приемы, позволяющие преобразовать ряд, представляющий формальное решение по методу Фурье, и доказать возможность его почленного дифференцирования. При этом на начальные данные задачи накладываются минимальные требования.

ПРИМЕНЕНИЕ ПРИНЦИПА МАКСИМУМА ПОНТРЯГИНА К ОПТИМИЗАЦИОННЫМ МОДЕЛЯМ ЭКОНОМИКИ

В данной работе рассматриваются три варианта модели работы сбытовой фирмы, представляющие собой дискретные задачи оптимального управления. На основе принципа максимума Понтрягина строится алгоритм решения этих задач. Приведены результаты численных расчетов.

О КОНГРУЭНЦИЯХ ЧАСТИЧНЫХ n-АРНЫХ ГРУППОИДОВ

Введено понятие Ri-конгруэнции частичного n-арного группоида как обобщение понятия правой или левой конгруэнции обычного группоида. Доказано, что при фиксированном i Ri- конгруэнции частичного n-арного группоида G образуют решётку, в которой решётка конгруэнций на G не обязатльно является подрешёткой. Построен пример, когда решётка конгруэнций частичного n-арного группоида G не является подрешёткой решётки отношений эквивалентности на G.

ФОРМУЛЫ КРАМЕРА ДЛЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ НАД БУЛЕВОЙ АЛГЕБРОЙ

Получены аналоги классических формул Крамера для систем линейных уравнений и неравенств с квадратной матрицей коэффициентов из произвольной булевой алгебры.

МНОГОЧЛЕНЫ, ОРТОГОНАЛЬНЫЕ НА НЕРАВНОМЕРНЫХ СЕТКАХ

В работе исследуются асимптотические свойства многочленов pˆn(t), ортогональных с весом ∆tj на произвольных сетках, состоящих из конечного числа N точек отрезка [−1, 1]. А именно установлена асимптотическая формула, в которой при возрастанииnвместе с N асимптотическое поведение этих многочленов близко к асимптотическому поведению многочленов Лежандра. Кроме того, исследованы аппроксимативные свойства сумм Фурье по этим многочленам.

ОБОБЩЕНИЕ МЕТОДА А. А. ДОРОДНИЦЫНА ПРИБЛИЖЕННОГО ВЫЧИСЛЕНИЯ СОБСТВЕННЫХ ЧИСЕЛ И СОБСТВЕННЫХ ВЕКТОРОВ СИММЕТРИЧНЫХ МАТРИЦ НА СЛУЧАЙ САМОСОПРЯЖЕННЫХ ДИСКРЕТНЫХ ОПЕРАТОРОВ

Пусть A –- самосопряженный дискретный оператор с простым спектром, действующий в сепарабельном гильбертовом пространстве H и имеющий там ядерную резольвенту, B –- са- мосопряженный и ограниченный в H оператор. Тогда можно подобрать такое ε > 0, что собственные числа и собственные функции возмущенного оператора A + εB будут вычисляться по методу А. А. Дородницына.

ГОМОТОПИЧЕСКИЕ ГРУППЫ ПРОСТРАНСТВ ТОЛЕРАНТНЫХ ПЕТЕЛЬ

В статье доказывается теорема об изоморфизме между гомотопическими группами исходного толерантного пространства и гомотопическими группами на единицу меньшей размерности пространства толерантных петель исходного пространства.

КЛАССИФИКАЦИЯ КОМПЛЕКСОВ ПРЯМЫХ В РЕПЕРЕ НУЛЕВОГО ПОРЯДКА В ПРОСТРАНСТВЕ F ̄2 3

Методом внешних форм Картана изучаются комплексы прямых в бифлаговом пространстве гиперболического типа, введённом автором. Доказано, что в этом пространстве в окрестности нулевого порядка существует 5 видов неспециальных комплексов. Для каждого из них строится подвижной репер первого порядка.

ПРИБЛИЖАЮЩИЕ СВОЙСТВА РЕШЕНИЙ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ С ИНТЕГРАЛЬНЫМ ГРАНИЧНЫМ УСЛОВИЕМ

На базе решений дифференциального уравнения первого порядка строятся приближения к непрерывным функциям с интегральными граничными условиями.

ГИЛЬБЕРТОВЫ ОБОБЩЕНИЯ b-БЕССЕЛЕВЫХ СИСТЕМ

В работе дается определение b-бесселевых систем, которое обобщает известное классическое понятие бесселевых систем, а также установлены критерии b-бесселевости систем. Изучены некоторые свойства пространства коэффициентов, соответствующих b-базису, обобщающее классическое понятие базиса Шаудера.

Страницы