Математика

О структуре оператора, обратного к интегральному оператору специального вида

В статье рассматривается алгебра с единицей, порожденная интегральными операторами, действующими в пространствах непрерывных периодических функций. Доказывается наполненность этой подалгебры в алгебре всех линейных ограниченных операторов.

О двукратной полноте собственных функций сильно нерегулярного квадратичного пучка дифференциальных операторов второго порядка

Рассматривается класс сильно нерегулярных пучков обыкновенных дифференциальных операторов 2-го порядка с постоянными коэффициентами. Предполагается, что корни характеристического уравнения пучков этого класса лежат на одной прямой, проходящей через начало координат, по разные стороны от него. Найден точный отрезок, на котором система собственных функций 2-кратно полна в пространстве суммируемых с квадратом функций. 

Матричное представление оператора растяжения в произведении локально-компактных нуль-мерных групп

В действительном вейвлет анализе dмерный оператор растяжения может быть записан с помощью действительной d×dматрицы. В настоящей работе найден явный вид оператора растяжения в произведении локально-компактных нуль-мерных абелевых групп. 

О необходимом условии минимума квадратичного функционала с интегралом Стилтьеса и нулевым коэффициентом при старшей производной на части интервала

 В работе получено необходимое условие экстремума квадратичного функционала с интегралом Стилтьеса для случая, когда коэффициент при старшей производной может обращаться в нуль на части интервала. Показано, что получаемая математическая модель обладает свойством невырожденности. Доказано, что разнопорядковая граничная задача, возникающая как необходимое условие экстремума, занимает “промежуточное” положение между краевыми задачами четвертого и второго порядков – пространство решений имеет размерность три. 

Необходимые и достаточные условия разрешимости обратной задачи для оператора штурма–лиувилля на конечном отрезке с неинтегрируемой особенностью внутри интервала

 В данной статье исследуется обратная задача спектрального анализа восстановления оператора Штурма–Лиувилля на конечном отрезке с неинтегрируемой особенностью типа Бесселя внутри интервала по заданным спектральным данным. Получена конструктивная процедура решения обратной задачи, доказана единственность восстановления оператора по заданным спектральным данным, а также получены необходимые и достаточные условия разрешимости данной обратной задачи.

To a Solution of the Inhomogeneous Riemann–Hilbert Boundary Value Problem for Analytic Function in Multiconnected Circular Domain in a Special Case

The author offers a new approach to solution of the Riemann–Hilbert boundary value problem for analytic function in multiconnected

circular domain. This approach is based on construction of solution of corresponding homogeneous problem, when analytic in domain

function is being defined by known boundary values of its argument. The author considers a special case of a problem when the

index of a problem is more than zero and on unit of less order of connectivity of domain. Resolvability of a problem depends on

Гиперболические параллелограммы плоскости Ĥ

На гиперболической плоскости bHположительной кривизны в модели Кэли – Клейна исследованы гиперболические парал-

лелограммы. Проведена их классификация, получены метрические соотношения между величинами углов и выражения

длин ребер через меры углов при вершинах.

Алгоритм переменного порядка, шага и переменной конфигурации для решения жестких задач

Построено неравенство для контроля устойчивости схемы Ческино второго порядка точности.На основе стадий этого метода

построена численная формула первого порядка с расширенным до 32 интервалом устойчивости. На основе L-устойчивой (2,1)-схемы и численной формулы Ческино разработан алгоритм переменной структуры, в котором эффективная численная формула выбирается на каждом шаге по критерию устойчивости. Алгоритм предназначен для решения как жестких, так и не жестких задач. Приведены результаты расчетов, подтверждающие эффективность построенного алгоритма.

Система Дирака с недифференцируемым потенциалом и антипериодическими краевыми условиями

В работе рассматривается системаДирака с антипериодическими краевыми условиями и с комлекснозначным непрерывным потенциалом. Предложен новый метод исследования спектральных свойств этой краевой задачи. Метод базируется на формулах типа операторов преобразования и является элементарным и простым. С его помощью получена уточненная асимптотика собственных значений и доказано, что система собственных и присоединенных функций образует базис Рисса со скобками в пространстве квадратично суммируемых двумерных вектор-функций, так как собственные значения могут быть кратными.

Когомологии алгебры ли векторных полей некоторого одномерного орбифолда

И. М. Гельфанд и Д. Б. Фукс доказали, что когомологии алгебры Ли векторных полей на окружности изоморфны тензорному произведению кольца полиномов с одной образуюшей степени 2 и внешней алгебры с одной образующей степени 3. В настоящей статье изучаются когомологии алгебры Ли векторных полей одномерного орбифолда S1/Z2, который представляет собой пространство орбит при действии группы Z2 на окружности отражением относительно оси Ox.

Страницы