Математика

Теорема Жордана-Дирихле для функционально-дифференциального оператора с инволюцией.

В работе исследуются вопросы о сходимости разложений произвольной функции f(x) в ряд Фурье по системе собственных функций функционально-дифференциального оператора с инволюцией Ly = y′(1 − x) + ®y′(x) +p1(x)y(x)+p2(x)y(1−x), y(0) = °y(1).

Основываясь на исследовании резольвентыболее простогофункциональнодифференциального оператора и используя метод контурного интегрирования резольвенты, получены достаточные условия сходимости ряда Фурье к функции f(x) (аналог теоремы Жордана–Дирихле).

α-достижимые области, негладкий случай

Преподаватель кафедры математического анализа, Петрозаводский государственный университет, amokira@rambler.ru

 

2 Доктор физико-математических наук, заведующий кафедрой математического анализа, Петрозаводский государственный университет, VstarV@list.ru

 

В статье продолжается исследование α-достижимых областей в Rn.Они являются звездообразными и удовлетворяют важному для приложений условию конуса.

Страницы