Математика

Необходимые и достаточные условия разрешимости обратной задачи для оператора штурма–лиувилля на конечном отрезке с неинтегрируемой особенностью внутри интервала

 В данной статье исследуется обратная задача спектрального анализа восстановления оператора Штурма–Лиувилля на конечном отрезке с неинтегрируемой особенностью типа Бесселя внутри интервала по заданным спектральным данным. Получена конструктивная процедура решения обратной задачи, доказана единственность восстановления оператора по заданным спектральным данным, а также получены необходимые и достаточные условия разрешимости данной обратной задачи.

To a Solution of the Inhomogeneous Riemann–Hilbert Boundary Value Problem for Analytic Function in Multiconnected Circular Domain in a Special Case

The author offers a new approach to solution of the Riemann–Hilbert boundary value problem for analytic function in multiconnected

circular domain. This approach is based on construction of solution of corresponding homogeneous problem, when analytic in domain

function is being defined by known boundary values of its argument. The author considers a special case of a problem when the

index of a problem is more than zero and on unit of less order of connectivity of domain. Resolvability of a problem depends on

Гиперболические параллелограммы плоскости Ĥ

На гиперболической плоскости bHположительной кривизны в модели Кэли – Клейна исследованы гиперболические парал-

лелограммы. Проведена их классификация, получены метрические соотношения между величинами углов и выражения

длин ребер через меры углов при вершинах.

Алгоритм переменного порядка, шага и переменной конфигурации для решения жестких задач

Построено неравенство для контроля устойчивости схемы Ческино второго порядка точности.На основе стадий этого метода

построена численная формула первого порядка с расширенным до 32 интервалом устойчивости. На основе L-устойчивой (2,1)-схемы и численной формулы Ческино разработан алгоритм переменной структуры, в котором эффективная численная формула выбирается на каждом шаге по критерию устойчивости. Алгоритм предназначен для решения как жестких, так и не жестких задач. Приведены результаты расчетов, подтверждающие эффективность построенного алгоритма.

Система Дирака с недифференцируемым потенциалом и антипериодическими краевыми условиями

В работе рассматривается системаДирака с антипериодическими краевыми условиями и с комлекснозначным непрерывным потенциалом. Предложен новый метод исследования спектральных свойств этой краевой задачи. Метод базируется на формулах типа операторов преобразования и является элементарным и простым. С его помощью получена уточненная асимптотика собственных значений и доказано, что система собственных и присоединенных функций образует базис Рисса со скобками в пространстве квадратично суммируемых двумерных вектор-функций, так как собственные значения могут быть кратными.

Когомологии алгебры ли векторных полей некоторого одномерного орбифолда

И. М. Гельфанд и Д. Б. Фукс доказали, что когомологии алгебры Ли векторных полей на окружности изоморфны тензорному произведению кольца полиномов с одной образуюшей степени 2 и внешней алгебры с одной образующей степени 3. В настоящей статье изучаются когомологии алгебры Ли векторных полей одномерного орбифолда S1/Z2, который представляет собой пространство орбит при действии группы Z2 на окружности отражением относительно оси Ox.

Теорема Жордана-Дирихле для функционально-дифференциального оператора с инволюцией.

В работе исследуются вопросы о сходимости разложений произвольной функции f(x) в ряд Фурье по системе собственных функций функционально-дифференциального оператора с инволюцией Ly = y′(1 − x) + ®y′(x) +p1(x)y(x)+p2(x)y(1−x), y(0) = °y(1).

Основываясь на исследовании резольвентыболее простогофункциональнодифференциального оператора и используя метод контурного интегрирования резольвенты, получены достаточные условия сходимости ряда Фурье к функции f(x) (аналог теоремы Жордана–Дирихле).

α-достижимые области, негладкий случай

Преподаватель кафедры математического анализа, Петрозаводский государственный университет, amokira@rambler.ru

 

2 Доктор физико-математических наук, заведующий кафедрой математического анализа, Петрозаводский государственный университет, VstarV@list.ru

 

В статье продолжается исследование α-достижимых областей в Rn.Они являются звездообразными и удовлетворяют важному для приложений условию конуса.

Страницы