Механика

МОДИФИКАЦИЯ МЕТОДА ЧИЗНЕЛЛА ПРИБЛИЖЕННОГО АНАЛИТИЧЕСКОГО РЕШЕНИЯ ЗАДАЧИ О СХОДЯЩЕЙСЯ УДАРНОЙ ВОЛНЕ

Обсуждается автомодельная задача о схождении к центру сильной ударной волны. Предлагается приближенное аналитическое решение, совпадающее по форме с решением Чизнелла. Для определения автомодельных представителей скорости, плотности и квадрата скорости звука выписаны простые формулы. Показатель автомодельности находится из решения единственного алгебраического уравнения. Достигаемые результаты находятся в улучшенном соответствии с точным решением классического численного метода.

АЛГОРИТМ ПОСТРОЕНИЯ ОПТИМАЛЬНЫХ СИСТЕМ ОДНОМЕРНЫХ ПОДАЛГЕБР ТРЕХМЕРНЫХ УРАВНЕНИЙ МАТЕМАТИЧЕСКОЙ ТЕОРИИ ПЛАСТИЧНОСТИ

Рассматривается естественная конечномерная (размерности 12) подалгебра алгебры симметрий, соответствующей группе симметрий предложенных в 1959 г. Д.Д. Ивлевым трехмерных гиперболических уравнений пространственной задачи теории идеальной пластичности для состояний, отвечающих ребру призмы Кулона – Треска, сформулированных в изостатической системе координат.

РАЗЛОЖЕНИЕ РЕШЕНИЯ ЗАДАЧ ТЕОРИИ УПРУГОСТИ ДЛЯ ПОЛОСЫ В РЯД ПО МОДАМ

Рассматриваются колебания полосы в рамках плоской задачи теории упругости. Приведено описание мод колебаний. Изучены свойства собственных значений и собственных функций краевой задачи для их амплитуд. Построена функция Грина, являющаяся ядром обратного оператора краевой задачи. Доказаны полнота собственных функций и теоремы о разложении, позволяющие решать задачи для полубесконечных или конечных пластин при произвольных видах граничных условий.

ОПРЕДЕЛЯЮЩИЕ СООТНОШЕНИЯ СТРУКТУРНОЙ АДАПТАЦИИ КОСТНОЙ ТКАНИ

Для кортикальной и трабекулярной костной ткани предлагаются определяющие соотношения функциональной адаптации структуры, устанавливающие связь скорости изменения радиуса пор с деформационным стимулом адаптации и активностью костных клеток. Развитый подход учёта клеточной активности является альтернативой известному экспериментальному методу Frost’а базовых многоклеточных единиц и позволяет распространить клеточный механизм ремоделирования на процесс функциональной адаптации.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ СЛОЯ ВЯЗКОЙ ЖИДКОСТИ С УПРУГИМИ СТЕНКАМИ КАНАЛА, УСТАНОВЛЕННОГО НА ВИБРИРУЮЩЕМ ОСНОВАНИИ

Рассмотрена задача математического моделирования динамических процессов в гидроопоре с упругим статором. Найдено решение динамической задачи гидроупругости гидроопоры, и построены ее амплитудные и фазовые частотные характеристики.

СИММЕТРИЙНЫЙ АНАЛИЗ И НЕКОТОРЫЕ НОВЫЕ ТОЧНЫЕ РЕШЕНИЯ МОДИФИЦИРОВАННОГО УРАВНЕНИЯ КОРТЕВЕГА – ДЕ ФРИЗА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ, ВОЗНИКАЮЩЕГО В АРТЕРИАЛЬНОЙ МЕХАНИКЕ

В статье рассматривается модифицированное уравнение Кортевега – де Фриза с переменными коэффициентами. С использованием классического метода анализа симметрии получены симметрии для этого уравнения. Чтобы решить сокращенное ОДУ используется обобщенный метод разложения по эллиптическим функциям Якоби. Получены новые точные решения для рассматриваемого уравнения.

ОБ ОСОБЕННОСТЯХ НЕИЗОТЕРМИЧЕСКОГО ОБТЕКАНИЯ СФЕРЫ ПОТОКОМ ВЯЗКОУПРУГОЙ ЖИДКОСТИ В СТЕСНЕННЫХ УСЛОВИЯХ

Исследуется структура течения и теплообмен при обтекании сферы осесимметричным потоком вязкоупругой жидкости. Движение жидкости описывается уравнениями сохранения массы, импульса и энергии, дополненные определяющим реологическим конститутивным соотношением состояния среды Фан-Тьен Таннера. Показано, что ползущее течение вязкоупругой жидкости в следе за сферой во многом отличается от ньютоновского. Отличия проявляются в нелинейном характере структуры течения и образовании так называемого «отрицательного следа».

ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧ СТАТИЧЕСКОГО ИЗГИБА И УСТАНОВИВШИХСЯ КОЛЕБАНИЙ ТОНКИХ ЦИЛИНДРИЧЕСКИХ ОБОЛОЧЕК ПРИ ЛОКАЛЬНЫХ ВОЗДЕЙСТВИЯХ

В работе рассмотрена применение метода сплайн-коллокации для численного решения задач статического изгиба и установившихся колебаний тонких цилиндрических оболочек при локальных нагрузках. Приводятся максимальные значения перемещений и первые три резонансные частоты стальных оболочек.

КРАЕВАЯ ЗАДАЧА СО СМЕЩЕНИЕМ ДЛЯ УРАВНЕНИЯ СМЕШАННОГО ТИПА С ДРОБНОЙ ПРОИЗВОДНОЙ

Для уравнения смешанного типа с частной дробной производной Римана – Лиувилля исследована нелокальная задача, краевое условие которой содержит линейную комбинацию обобщенных операторов дробного интегродифференцирования. Доказана однозначная разрешимость рассматриваемой задачи.

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ОРИЕНТАЦИИ КРУГОВОЙ ОРБИТЫ КОСМИЧЕСКОГО АППАРАТА

Рассмотрена задача оптимальной переориентации орбиты космического аппарата (КА) с помощью ограниченного по модулю управления, ортогонального плоскости орбиты КА. Найдено аналитическое решение дифференциальных уравнений ориентации круговой орбиты КА для постоянного на смежных участках активного движения КА управления.

Страницы