Механика

АКТУАЛЬНЫЕ ПРОБЛЕМЫ АЭРОДИНАМИКИ (перспективы управления сдвиговыми течениями)

В работе обсуждаются задачи и возможности управления пристенными и свободными сдвиговыми течениями. Из числа методов управления, доведенных до практического использования и находящихся в стадии разработки, выделены основанные на эффектах гидродинамической неустойчивости. В ряде случаев их применение позволяет существенно модифицировать локальные и интегральные характеристики течений при минимальном управляющем воздействии.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЗАМКНУТЫХ МОЛЕКУЛ ДНК

В рамках стержневой модели разработан метод определения параметров пространственной конфигурации молекул нуклеиновых кислот. С помощью разработанного метода получены необходимые и достаточные условия существования семейства замкнутых молекул ДНК. Найденные условия можно использовать при синтезе замкнутых молекул с заданными параметрами.

 

МЕХАНИЧЕСКИЕ ПРОБЛЕМЫ В НАНОТЕХНОЛОГИИ

В последнее десятилетие производство и внедрение наноразмерных агрегатов и включений становится актуальным в электронике, медицине, космической технике и многих других отраслях производства. В связи с этим определилась необходимость анализировать нанообъекты на предмет прочности, устойчивости, дефектологии и долговечности. Какими же методами мы можем пользоваться? Естественно, обсуждается возможность применения традиционных методов классической механики, которые развивались и опробывались столетиями.

ГАЗОДИНАМИКА И МАГНИТНАЯ ГИДРОДИНАМИКА ВЗАИМОДЕЙСТВИЯ МЕЖПЛАНЕТНОЙ И МЕЖЗВЕЗДНОЙ СРЕД. ТЕОРИЯ И ЭКСПЕРИМЕНТ

Проблема взаимодействия межпланетной и межзвездной сред сводится к исследованию взаимодействия сверхзвукового потока полностью ионизованного водородного газа от источника (солнечный ветер) со сверхзвуковым поступательным потоком межзвездного газа, главными компонентами которого являются нейтральная (атомы водорода) и плазменная (протоны и электроны). В работе описывается самосогласованная кинетико-континуальная модель такого взаимодействия, предложенная в [8].

ПРОСТРАНСТВЕННАЯ ЗАДАЧА МАТЕМАТИЧЕСКОЙ ТЕОРИИ ПЛАСТИЧНОСТИ (КИНЕМАТИЧЕСКИЕ СООТНОШЕНИЯ, ОПРЕДЕЛЯЮЩИЕ ТЕЧЕНИЕ НА ГРАНИ И РЕБРЕ ПРИЗМЫ КУЛОНА – ТРЕСКА)

В работе приводится вывод правильно определенной системы уравнений, описывающей кинематику пространственного идеально пластического течения на ребре призмы Кулона – Треска, и дано исследование основных кинематических уравнений (включая пространственные соотношения Коши и уравнения совместности для приращений деформаций) с помощью триортогональной изостатической системы координат. Устанавливаются правильная определенность и гиперболичность системы уравнений для приращений перемещений и находятся ее характеристические направления.

АСИМПТОТИЧЕСКИЕ МЕТОДЫ В ДИНАМИКЕ ОБОЛОЧЕК ПРИ УДАРНЫХ ВОЗДЕЙСТВИЯХ

В работе описаны асимптотические методы, разработанные для построения математической модели нестационарных волновых процессов в оболочках вращения при ударных торцевых воздействиях, а также предназначенные для решения краевых задач для компонент напряженно-деформированного состояния (НДС) с различными показателями изменяемости и динамичности. Приведена классификация асимптотических приближений.

МЕТОД ГРАНИЧНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ ДЛЯ РЕШЕНИЯ ЗАДАЧ ИЗГИБА ИЗОТРОПНЫХ ПЛАСТИН, ЛЕЖАЩИХ НА СЛОЖНОМ ДВУХПАРАМЕТРИЧЕСКОМ УПРУГОМ ОСНОВАНИИ

Данная работа посвящена решению задач линейного деформирования пластин непрямым методом граничных элементов, основанному на применении фундаментального решения задачи изгиба изотропной пластины, лежащей на сложном двухпараметрическом упругом основании. В результате анализа разрешающих уравнений показано, что задача изгиба изотропной пластины, лежащей на простом винклеровском упругом основании, является частым случаем задачи, заявленной в заголовке статьи.

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ИЗГИБА КУСОЧНО-ОДНОРОДНОЙ ПРЯМОУГОЛЬНОЙ ПЛАСТИНКИ ИЗ ИЗОТРОПНОГО МАТЕРИАЛА

В работе рассматривается задача изгиба кусочно-однородной прямоугольной пластинки из изотропного материала. На линии контакта задаются две группы условий: геометрические условия, отражающие непрерывность и гладкость срединной поверхности составной пластинки, и силовые условия, обеспечивающие равенство изгибающих моментов и обобщенных перерезывающих сил в левой и правой частях пластинки.

МОДЕЛИРОВАНИЕ РЕЖИМОВ ДВИЖЕНИЯ УДАРНОЙ СИСТЕМЫ ПРИ ПЕРИОДИЧЕСКОМ СИЛОВОМ ВОЗДЕЙСТВИИ

Разработана модель движения ударной системы при периодическом силовом воздействии с учетом возможных многократных ударов за период силового воздействия. Осуществлено моделирование режимов движения ударной системы. Сделан выбор параметров системы, реализующих требуемые характеристики движения.

 

Страницы