Математика

ПОЧТИ ПЕРИОДИЧЕСКИЕ НА БЕСКОНЕЧНОСТИ ФУНКЦИИ ОТНОСИТЕЛЬНО ПОДПРОСТРАНСТВА ИНТЕГРАЛЬНО УБЫВАЮЩИХ НА БЕСКОНЕЧНОСТИ ФУНКЦИЙ

В статье введен в рассмотрение и изучен новый класс почти периодических на бесконечности функций, который определяется с помощью подпространства интегрально убывающих на бесконечности функций. Он является более широким по сравнению с классом почти периодических на бесконечности функций, введенным в работах А. Г. Баскакова (относительно подпространства исчезающих на бесконечности функций).

ИСПРАВЛЕНИЕ ФУНКЦИЙ И ИНТЕРПОЛЯЦИЯ ЛАГРАНЖА В УЗЛАХ, БЛИЗКИХ К УЗЛАМ ЛЕЖАНДРА

Известно, что интерполяционный процесс Лагранжа непрерывной функции с узлами в нулях многочленов Чебышева может расходиться всюду  (с произвольными узлами --- почти всюду) подобно ряду Фурье суммируемой функции. В то же время известно, что любую измеримую (конечную п.в.) функцию можно исправить на множестве сколь угодно малой меры так, что ее ряд Фурье станет равномерно сходящимся (так называемое усиленное C-свойство).

СВЯЗНОСТИ НЕНУЛЕВОЙ КРИВИЗНЫ НА ТРЕХМЕРНЫХ НЕРЕДУКТИВНЫХ ПРОСТРАНСТВАХ

В каком случае однородное пространство допускает инвариантную аффинную связность? Если существует хотя бы одна инвариантная связность, то пространство является изотропно-точным, но обратное неверно. Если однородное пространство является редуктивным, то оно всегда допускает инвариантную связность. Целью данной работы является описание трехмерных нередуктивных однородных пространств, допускающих аффинные связности только ненулевой кривизны, а также самих связностей, их тензоров кривизны и кручения.

АППРОКСИМАЦИЯ УПРАВЛЕНИЯ СИНГУЛЯРНО ВОЗМУЩЕННОЙ СИСТЕМОЙ С ЗАПАЗДЫВАНИЕМ ПРИ ИНТЕГРАЛЬНЫХ КВАДРАТИЧНЫХ ОГРАНИЧЕНИЯХ

Целью работы является разработка и теоретическое обоснование аналитических приближенных или асимптотических методов решения задач оптимального управления для сингулярно возмущенных систем с постоянным запаздыванием по фазовым переменным в условиях неопределенности по начальным данным. Для достижения поставленной цели в работе рассмотрена задача управления по минимаксному критерию для сингулярно возмущенной системы с запаздыванием по быстрым и медленным переменным при неопределенных начальных условиях и интегральных квадратичных ограничениях на ресурсы управления.