Математика

О ПРИМЕНЕНИИ ЭЛЛИПТИЧЕСКИХ КРИВЫХ В НЕКОТОРЫХ ПРОТОКОЛАХ ЭЛЕКТРОННОГО ГОЛОСОВАНИЯ

Протоколы электронного голосования позволяют проводить процедуру голосования, в которой избирательные бюллетени существуют только в электронной форме. Данные протоколы обеспечивают тайный характер голосования. Основное свойство протокола голосования - универсальная проверяемость, т. е. предоставление возможности всякому желающему, включая сторонних наблюдателей, в любой момент времени проверить правильность подсчета голосов.

О ПРЕДСТАВЛЕНИИ ФУНКЦИЙ АБСОЛЮТНО СХОДЯЩИМИСЯ РЯДАМИ ПО H -СИСТЕМАМ

Рассматриваются вопросы представления абсолютно сходящимися рядами функций в пространствах однородного типа. Во введении приводится определение системы типа Хаара (H -системы), связанной с некоторой диадической системой в пространстве однородного типа X. Доказывается, что для любой, почти всюду (п.\,в.) конечной, измеримой на X функции f существует абсолютно сходящийся ряд по системе H, который сходится к f п.\,в. на X. Из этой теоремы, в частности, следует, что если H={h_n}- обобщенная система Хаара, порожденная ограниченной последовательностью p_k, то для любой п.\,в.

Asymptotic Formulae for Weight Numbers of the Sturm–Liouville Boundary Problem on a Star-shaped Graph

In this article the Sturm-Liouville boundary value problem on the graph Γof a special structure is considered. The graph Γhas m edges, joined at one common vertex, and m vertices of degree 1. The boundary value problem is set by the Sturm-Liouville differential expression with real-valued potentials, the Dirichlet boundary conditions, and the standard matching conditions. This problem has a countable set of eigenvalues. We consider the so-called weight numbers, being the residues of the diagonal elements of the Weyl matrix in the eigenvalues.

УСТОЙЧИВОСТЬ ПЕРИОДИЧЕСКИХ БИЛЬЯРДНЫХ ТРАЕКТОРИЙ В ТРЕУГОЛЬНИКЕ

Рассматривается проблема устойчивости периодических бильярдных траекторий в треугольниках. Под устойчивостью понимается сохранение периода и качественной структуры траектории (её комбинаторного типа) при достаточно малых изменениях треугольника. Для описания устойчивых траекторий вводятся различные виды развёрток: геометрические, алгебраические, веерные. На основе введённых развёрток предложен новый метод веерного кодирования, упрощающий исследование устойчивости периодических траекторий.

РЕКУРРЕНТНЫЕ СООТНОШЕНИЯ ДЛЯ ПОЛИНОМОВ, ОРТОНОРМИРОВАННЫХ ПО СОБОЛЕВУ, ПОРОЖДЕННЫХ ПОЛИНОМАМИ ЛАГЕРРА

В настоящей работе рассматривается система полиномов (l_r,n)^a (x) (r — натуральное число, n = 0,1,...), ортонормированная относительно скалярного произведения типа Соболева (полиномы, ортонормированные по Соболеву) следующего вида: <f, g> = (sum _(v=0))^(r−1) f^(ν)(0)g ^(ν)(0) + (f _0)^∞ f^(r) (x)g^(r)(x)ρ^(x)dx и порожденная классическими ортонормированными полиномами Лагерра.

АППРОКСИМАТИВНЫЕ СВОЙСТВА ДИСКРЕТНЫХ СУММ ФУРЬЕ ДЛЯ НЕКОТОРЫХ КУСОЧНО-ЛИНЕЙНЫХ ФУНКЦИЙ

Для заданного натурального числа N > 2 на отрезке [0,2π] выбрано N равноотстоящих узлов  t_k = 2πk/N (0 < k < N − 1) Для каждого натурального числа  n, удовлетворяющего неравенству 1 < n < ⌊N/2⌋, обозначим через  L_ n,N (f) = L _n,N (f,x) тригонометрический полином порядка n наименьшего квадратического отклонения от функции f в точках tk, который доставляет минимум сумме среди всех тригонометрических полиномов Tn порядка n. Рассмотрена задача о приближении кусочно-линейных периодических функций полиномами N L n,N (f,x).