Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Халиуллина А. Р. Конгруэнции полигонов над группами. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 4, pp. 133-137. DOI: 10.18500/1816-9791-2013-13-4-133-137

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
25.11.2013
Full text:
(downloads: 147)
Language: 
Russian
Heading: 
UDC: 
512.579

Конгруэнции полигонов над группами

Autors: 
Халиуллина Айгуль Римзиловна, National Research University of Electronic Technology, Russia
Abstract: 

Получено полное описание конгруэнций полигонов над группами.

References: 
  1. Kudriavtsev V. B., Podkolzin A. S., Ushchumlich Sh. Vvedenie v teoriiu abstraktnykh avtomatov [Introdunction in abstract automata theory]. Moscow, MGU, 1985, 176 p. (in Russian).
  2. Lallement G. Semigroups and combinatorial applications. New York, Wiley, 1979, 376 p.
  3. Avdeev A. Yu., Kozhuhov I. B. Acts over completely 0-simple semigroups. Acta Cybernet, 2000, vol. 14, no. 4. pp. 523–531.
  4. Ohemke R. H. Congruences and semisiplicity for Rees matrix semigroups. Pacif. J. Math., 1974, vol. 54, no. 2. pp. 143–164.
  5. Kilp M., Knauer U., Mikhalev A. V. Monoids, acts and cathegories. Berlin, New York, 2000. 529 p.
  6. Maksimovskii M. Yu. Bipolygons and multipolygons over semigroups. Math. Notes, 2010, vol. 87, no. 5–6,pp. 834–843.
  7. Kurosh A. G. Teoriia grupp [Group theory]. Moscow, Nauka, 1967, 648 p. (in Russian).
Short text (in English):
(downloads: 51)