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AnHoTtamusa. PaccmarpuBaercsi ynpaB/sieMass Molesb B3aUMOLEHCTBHS [BYX BUIOB »KEPTBa —
XULIHUK. YHUCJIEHHOCTb MOMYJSIUN OMHCHIBAETCS CHCTEMOH NU((pepeHLHaTbHbIX YPaBHEHHH 2-T0
Mopsifika, B MPaByl0 YacTb KOTOPOH BXOAUT yITpaBjeHHe, YAOBJETBOpsIOllee Harepen 3afaHHOMY
orpaHuueHuto. CucremMa MMeeT TOUKY MOKOsl (TouKy paBHoBecHsi). Heo6xomnnmo BeIGpaTh yrnpas-
JIeHHe TakK, 4TOoObl MepeBeCcTH MPOU3BOJbHOE HayaJbHOE COCTOSIHHS M3 HEKOTOPOH OKPECTHOCTH
TOYKH PaBHOBECHS MO TPAEKTOPHM CHUCTEMbl B TOUYKY PaBHOBeCHs 3a KOHeuHoe Bpems. CTpoutcs
CeMelCTBO TMO3ULMOHHBIX YINpaBJeHWH, KOTOpOe pellaeT 3Ty 3anady. HaXomumTcsi OKpecTHOCTb
TOYKH TIOKOSI, SIBJSIIOLIASCS 3JJIMICOM C LEHTPOM B 3TOH Touke. [IpuueM Bce TpaeKTOpPHH,
OTBeyallllMe 3THM YyIpaB/JeHUSAM U HauMHaIoOLIMecs B MPOMU3BOJNBHOH TOUKe 3JJIMICA, 3aKaHYM-
BAIOTCsl B TOUKE PAaBHOBECHS M HAXONSITCS BHYTPH 3JIIMIICA.

KuaroueBbie cioBa: cTabuinsaius 3a KOHeUHoe BpeMsi, pyHkuus yrnpasasemoctd B. M. Kopo6oga,
orpaHWYeHHOe yIpaBJ/eHHe, MOJE/b XUIIHHUK — XKepPTBa
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INTRODUCTION

An interesting system exhibiting oscillations and chaotic behavior is the prey—
predator model [1-3], which because of its complex dynamic characteristics results in
a challenging system to be controlled [4]. This model has been used to study biological
phenomena and the equilibrium of the species. The earliest ratio-dependent model was
given by Leslie and Gower [5]. In this model, the predator is also assumed to be
growing logistically with a carrying capacity that depends on the availability of a vari-
able resource (prey). This formulation is based on the assumption that a reduction
in a predator population has a reciprocal relationship with the per capita availability
of its preferred food. This interesting formulation for the predator dynamics has been
discussed by Leslie and Gower in [5] and by Pielou in [6].

From a control view point, it is desirable to reach an equilibrium point for the
system, particularly in finite time and by a bounded control input, as considered in this
work. We will crucially employ V. I. Korobov’s method consisting of the use of the
controllability function (CF), which is a Lyapunov-type function. The main differences
between the CF and the Lyapunov functions are the following.

The use of the CF (resp. Lyapunov funtion) allows stabilizing the control system in
finite (resp. in infinite time) [7,8].

The CF (resp. Lyapunov funtion) is applied to equilibrium or nonequilibrium points
(resp. only for equilibrium points [9].

The CF (resp. Lyapunov funtion) is an implicit function (resp. explicit function) [10].

See also [11] and [12].
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In comparison with previous works on the stabilization of the prey and predator
model [3,13], in this current work we present a family of bounded controls that stabilize
the aforementioned system in finite time. See Theorem 2. Furthermore, for the equi-
librium point of the system, an admissible neighborhood in terms of the interior of an
ellipse is given. See Lemma 3 and Remark 3.

Notation 1. Let R denote the set of real numbers. Let S be an m x n matrix. By
ST we denote the transpose matrix of S. Let x € R". By ||z|| we denote the euclidian

norm of & := (x1,...,2,), i.e., ||z|]| ;== (z3 + ...+ 22)7. The norm of an n x n matrix S
is defined by ||S]| := max o |sil-
VA

1. THE PREY -PREDATOR MODEL

Consider the nonlinear control system

. XT1T2
=1(1 — —
X $1( Il) x%+0z’
. (1)
T (B PR
By

defined in set D := {(z1,72) € R*: 1 > 0, xy > 0} with the initial condition (z9,9)
and 29 > 0, 25 > 0, with u being a control input for achieving stabilization of the system
at the equilibrium point. Let (£,n7) € D be the equilibrium point of the system (1) with
u = 0. In system (1), z; = X/K, 2o = mY/rK* t =rT, a = a/K? 8 =mn/Kr
and v = s/r, where X and Y represent the prey and predator population, respectively.
The parameter r is the intrinsic growth of prey species with carrying capacity K.
Furthermore, T is a scaled time variable, m denotes the per capita consumption rate of
the predator. Parameter a denotes the number of prey required to halve the maximum
rate, just half, while s is the growth rate of the logistically growing population Y, and
finally n is a magnitude of the food quality that the prey provides for conversion into
predator population [4, 13]. All the parameters are assumed to be positive.

The statement of the problem we consider is the following: find a bounded positional
u = u(x) with |u(x)| < uy; and such that the trajectory z(t) = (z1(t),z2(t)) starting
at the initial point zy := (29, 29) and belonging to a certain neighborhood of the point
T := (&,n) terminates at z at finite time T'(x,z). This problem is called the synthesis
problem.

System translated to the origin

Recall that the state (zy,x2) of the system (1) belongs to the open first quadrant,
when z; > 0 and x5 > 0. The following remark is valid.

Remark 1. The abscissa and ordinate of the equilibrium point (£, n) of the system (1)
satisfy the following inequalities:

0<é<1l, and 0<n<§p.

Proof. From the right hand side of (1) with u = 0, we have that the abscissa of
an equilibrium point belonging to @) satisfies

2} —2* +x(a+p)—a=0. (2)
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Denote by f the left hand side of (2). Note that the coefficients of f alternate in sign,

which implies that (2) has three positive solutions or one positive solution. By analyzing

the derivative f’, we find that (2) has one positive root and that 0 < £ < 1. Consequently,

from the second equality of (1) we have that 0 < n < 5. O
By translating the equilibrium point (§,7) to the origin, we have

y = Ay +bu+ g(y), (3)
where
26(1-¢)* 1-¢
A= 7 ¢ , b::(0>, (4)
By —y 1
,: 91(y17y2)) 5
g(y) (gz(yza?h) ®)
91 (y1,ys) = djyi + dzyi + doyi + duyays (1) = (2 = By)?
e G 2pé+yl +a+g) o TITE B(&+ )
and

di=(a—&) (a+&), do=(a+&)(~wi+a®+ a5 - 3)§+&°),
ds = (04—1-52) (3a§—a+§3+§2), dy = o+ &%

We assume that the parameters o and g are positive. Consequently, the function g
appearing in (5) and the system (3) is well-defined in the region:

DO = {(yl,yQ) €R2I y1+§>0, y2+77>0}.

The linear part of (3) is completely controllable if and only if rank(b, Ab) = 2, i.e., if and
only if
1-¢

— # 0.
3 7
In the sequel, we will study the control system in a certain neighborhood of the origin
Dy :={y € Do: llg(y)ll < Cullyll} (6)

for some C} > 0.

2. FINITE-TIME STABILIZATION

[t seems that [14] was the first to use the term finite-time stability (FTS).
Further developments in FTS were made by a number of researchers: [15-18] and
references therein. See also [19] and [20].

In this work, we employ the theorem appearing in [7, p. 552], where the synthesis
of bounded controls in the first approximation of a certain general nonlinear system is
treated. Our work differs from [7] mainly because we construct a specific control that
depends on the equilibrium point Z, which in turn depends on the parameters of the
system «, § and . We also describe a certain ellipse “centered” at the equilibrium point
Z, so from every inner point xy of this ellipse it is possible to arrive at z in finite time
T(x,Z). Another important novelty is the fact that in the construction of the bounded
control u(x) we use the method proposed in [21]. See also [22] and [23]. The controls
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appearing in [21] depend on a parameter (as in (12)) that in turn enables having a
family of controls that could solve the synthesis problem.

By Remark 1, £ — 1 # 0. Let

T - 7
=\ s | (7)

Clearly, we see that det F' # 0.

cT

Remark 2. The matrix F' can be written as ' = ( A
c

), where ¢ is a vector
satisfying (¢,b) = 0 and (¢, Ab) = 1.
Furthermore, we use the transformation
z=Fy (8)

to rewrite Eq. (3) in the canonical form

t= Az +bw+ Fg(F'2) |w| <w, 9)
where
p=(p1,p2)T (10)
with p; := —M?;U% and py := w—v and Ag := (8 (1)> The new control
w has the following form:
w:=pz+u (11)
with the restriction w < wy, where
2
wy = ul—u22|pj]. (12)
j=1

We assume that uy < As in [7], we require that system (9) is considered in the

ST
neighborhood
Q:={z1 7] <u2}. (13)

Our next step is to construct a positional control w(z) such that |w| < w; and that the
trajectory of any initial point zy := (29, 29) belonging to a certain neighborhood of the
origin arrives to the origin at finite time 7'(zp). To this end, we will use V. I. Korobov’s
method, which consists of a Lyapunov-type function 6(z), that is the only positive
solution of the following equation:

2a00 = (K (0)z, 2), (14)

where
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is a positive matrix for # > 0. The number a; is a negative number such that the
matrices K and K — %K are both positive definite matrices. In terms of the parameter
ap, this condition is equivalent to the following inequality:

9
a; < —5 (15)

The number a satisfies the inequality

< (16)
a@p < ——mm——.
O 2a1(ay + 3)
In the frame of Korobov’s method, the positional control w(z) has the form
w(z) mz 3% (17)

. 02(21722) 9(21,22>‘

Recall that in [21] for the linear system 2 = Agz + bw, a family of bounded positional
controls was proposed that exactly stabilized this system at time T'(zy) = 6y, where 6,
is the root of Eq. (14) for z.

Let us now rewrite the matrices K and éK — d%K in a more convenient form.

_3
Let D(0) := 902 9(_)%), Thus, the matrices K = K(6) and ;K — K can be
written as follows:
1 1 d
DO)K,D(0) = K, -D()K,D(6) = -K — —K,
0 0 do
where
1 aq -2 1 4@1 —6
K= Ky = ) 18
YT a4 (—2 —1>’ T 4t a (—6 —2) (18)
In the sequel, we assume that § satisfies the inequality 6 < 1.

Lemma 1. Let A\, k, be the minimal eigenvalue of the matrix K, and C) the
constant appearing in (6). Thus, the following is valid:

(K2 Fg(F~'2) _ CillKall

((%K — d%K)z,z) = Amin, K,

Prooif. Denote
q:=D(0)z. (19)

By using (18) and (19), we then have

(Kz, Fg(F~'2)) (DK\Dz,Fg(F~'2)) (Kiq, DFg(F'D7q)) o

(K — 4K)z2)  §(DK2Dz,2) 5 (K2q,9)
K D|I[IFIIFYID Ch||K
<901|| gD ] 2|||| all _ Cull
AInin,](g ||Q|| )\min,Kg O

The following result gives an estimation of the derivative of the controllability func-
tion # with respect to the system (9).
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Theorem 1. Let Cy, Ky and Ain x, be as in (6), (18) and the minimal eigenvalues
of K, respectively. The following inequality is valid:

Ch|| KA ||

min, Ko

0< 140 (20)

a

Proof. Let a:= (%,=2)". We take the derivative of Eq. (14) with respect to system
(9), and we have

(KA)+ AJK + ab™K + KbaT)z, ) (Kz, Fg(F~'2))
(6K — 5K)z2) (GK = 5K)z2)
(Kz,Fg(F~12))

((%K - d%K)Z’Z)

6 = (21)

=142 (22)

The first term of the right side of (21) is equal to —1 because of [21, Equation (2.9)].
Finally, inequality (20) readily follows from (22) and Lemma 1. OJ

Notation 2. Let § > 0, Cy > 0 such that for 8 < 0
Ch| K]

—1+46
)\min,Kg

< O, (23)

Let R
Dy :={z:0<6(z) < 6}. (24)
Lemma 2. Let inequality (23) holds. Thus, the [ollowing inequality is valid:
0 < —Cy. (25)
Moreover, for z € D, the time in reaching from z to the origin is estimated by the
following inequality:
0o
T(z) < —.
R
Proof. By taking into account (20) and (23), inequality (25) readily follows. To pro-
ve (26), one integrates (25) on the trajectory z = z(¢) and attains (z(t)) — 6y < —Cht.
By using [7, p. 552], we have that z(7") = 0, which implies 6(2(7")) = 0. Thus, we
obtain (26). O

Next, to guarantee that the trajectory x(¢) starting near the equilibrium point (£, 7)
will not abandon the first quadrant, we rewrite equality (14) in a more convenient form:

2 T aq 26 2
2a004:( ) oy A ( ) (27)
“2 TIta  dra ) \*2
In terms of the variable y = (y1,v2)7, equality (27) is written as 2ao0* = (K3(0)y,y),
where

(26)

al 26
K3(0) == FT ( Ity 4;31) F
4+a1 4+ay
and F as in (7). Let A () and A%, () be the eigenvalues of K3(f). Note that for fixed
positive 6 these eigenvalues are positive numbers. Recall from (15) that a; < —3.
The following lemma can be verified by using facts concerning the transiormation
of the quadratic to a canonical form [24].
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Lemma 3. With £ > 0,n > 0, let = = (§,n) be an equilibrium point of the sys-
tem (1), and let Ky be as in (18). Furthermore, let (k‘j’g)izzl := K3, and the parameter

ag satisfies (16). Let 0 be the smallest positive value for which the following inequality

holds:
a { 2&094 2@004
max :
Ay (0)7 A%, (6)
Thus, the interior of the ellipse

b < ninge.n)

Dg = &(x,0,7) =0 (28)

belongs to the first quadrant. Here

2
&(x,0,7) = 2a06* — Z ki o2 (e, AN — 7)) (e, AT — 7). (29)

je=1

Notation 3. Let (), Dy and Ds be as in (13), (24) and (28), respectively.
Let

Here ) and D, are understood in terms of the variable z.
Now we present the main result of our work.

Theorem 2. Let = = (¢,m) and Dg be as in Lemma 3. Let A be as in (4), ¢ be as
in Remark 2 and a; < —%, ay = —3. Furthermore, let p; for j = 1,2 be as in (10) and
suppose that (z9,29) belongs to the region Ds. Thus, the control

2

u(a,2) = at (@ —1)(c, ANz — 1)) =) pilx—z)(c, Az —1))  (31)

Jj=1 Jj=1

satisfies the condition |u(x)| < uy and solves the synthesis problem. The time of motion
from xo = (29, 29) to the origin satisfies the [ollowing inequality

fo

Proof. The restriction |u(z)| < uy is verified by employing (11), (12) and the in-
equality |w| < w;. This last inequality is proved in [21, Theorem 3.1]. Inequality (32)
follows from Theorem 1 and Lemma 2. O

Remark 3. For fixed 0, the equation &(x,0,z) = 0 represents an ellipse. Since the
control (31) stabilizes the system (1), the trajectory of the system (1) will not leave the
ellipse (28) calculated at & = 6. In turn, 6, is the solution of the equation &(z,0,z) =0
for x = .

Remark 4. We emphasize that the trajectory z(¢) under the influence of control

u(z,z) approaches the equilibrium point & for ¢t — T = T(xo,z). For t > T, the
trajectory stays at the equilibrium point z.
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3. GRAPH OF THE TRAJECTORY AND CONTROL

To plot the graph of the trajectory z(t) from a given initial point (29, 29), as well as
the control u(z(t)) and the controllability function 6(x(t)), we have added a differential
equation for the variable 6:

. X172

i = (1 =) - S

To ="y (1 — —x2> + u(zy, x9), (33)
By

0 =—1+2¢(z,0,7),

with initial conditions z1(0) = 29, 2,(0) = 29 and 6(0) = 6y. Here 6, is the root of (29).
Moreover,

DO)K\D(O)(x — ), Fg(F(z 1))
5(D(O)K2D(0)(x — 7), (x — 7))

Let us remark that the initial point (29, 29) should belong to the region D3 (30).

(. 0,7) =

Example
Let =10, # = &, v = 1 and uy; = 5. The equilibrium point z = (£,7) is equal
to (E,%) The vector p is equal to (—2821 280w, =1, ¢y = —6 and by (12),
2ag = -%. The positional control has the form
43 _ 108lw; 3189z
w(o,7) = I s el T e B s | 79841879z, 3187w, 14084927
02 0 9729000 10810 1351250
with 0 = 0(z — 7).
num(x, )

The function ¢ (z,0,z) is given by ¢(z,0,7) = where

den(z,z)’

num(z, 7) = x5 (648600y; (10810y; + 18539y7 + (114229 — 900ys) y1 + 9190ys) 21 X
X (y1 (31893 — 10810) + 300ysx3) — (1034192700y; + 2821255660y, —
—9(31187000y, — 1414988103) y; + 4 (20250000y3 + 112867650y, + 2774668507) v; +
+90y» (1620000, — 14579147) y1 + 875610000y3) 5 (y1 (95675 — 21620) + 900y223)) |

3243

den(z,z) == —— 50

(10052 + 180y + 1081) 2y (4674244000057 — 1945800y 25 (10630y, +
+10002, — 1081) + 2722 (10630y; + 1000z, — 1081)?)

1081
1000 °

With the initial conditions 2§ = 1 and 2§ = 3, the graph in Fig. 1 shows the

trajectories of x1(t) and xo(t), while in Fig. 2 the system phase portrait is displayed.

Withylle—l%andyg:xg—
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Fig. 1. Trajectories of z1(t) and z2(t)
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Fig. 2. System phase portrait x;(t) vs
x9(t) and the corresponding ellipse

Fig. 3 shows the controllability function 6 on the trajectory x(¢). The graph of the
positional control w on the trajectory z(¢) is as shown in Fig. 4.

D2 51
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S0.5

=

o

©o.0!

05

—1.0L ‘ ‘ ‘ - ]
0.0 0.5 1.0 1.5 Time (¢)

Fig. 3. The controllability function time evolution

Fig. 4. The positional control input

By using Wolfram Mathematica, we have calculated that the time of arriving from
zg to T is T(zg, ) = 2.407427 and that z,(T) = ¢ and |xo(T) — 7| < 1.06063 x 107°.
The corresponding ellipse for the equilibrium point (55, 10st) is given by the equality

0*y2 + (— ) y > Y1y2 =0

10’ 1000
10636>
for 6 = 2.497329 and y; — 21 — & and y, = &, — 1081

100

112996962
20000

6* 1

18 2

1168561
2700

10814

45

11491036
4500

2
1

i
1000 *

To the best of the authors’ knowledge, no control methodologies have been applied to
this system, which considers two main features: achieving finite-time convergence with
a bounded control input.

CONCLUSIONS

We have presented a family of explicit bounded controls that stabilize the predator —
prey system (1) in finite time. An ellipse depending on the parameters of the system
(1) and the equilibrium point is given. The translation of any initial point zo = (29, 29)
to the equilibrium point z is guaranteed if xy belongs to this ellipse, which in turn is
located in the first quadrant of R?: the initial point satisfies the conditions z¢ > 0 and
:L‘g > 0.
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