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AnHotanus. PaccMatprBaetcs 3amaya NpUONHIKEHHOTO pellleHus JUHeHHbIX AuddepeHInansbHbIX
ypaBHEHUH ¢ paspblBHBIMU Ko3d(pduuueHtamu. [Ipennonaraercsi, 4To 3TH KO3(PPULHUEHTH UMEIOT
f-TpuMHUTHBHBIE. DTO O3HAYaeT, UTO 3TH KOI(P(PULUHEHTH SBJASIOTCS HHTETPUPYEMBIMH TOJBKO
no XeHcToky. Bmecto ucxonHo# 3amauu Kowmn Mbl paccMarphBaeM Apyryro 3ajgady ¢ KyCOYHO-
MOCTOSIHHBIMU KO3 ullneHTaMu. TOouHOe pellleHHe 3TOW HOBOW 3aJaddl eCTb MPHUOJHKEHHOE
pelieHre ucxonHoi 3anayu Komu. Mel yKaspiBaeM cTeleHb allpoKCUMalUM B TepMUHAX f-TIPUMHU-
TUBHBIX JJIS1 HHTErpUpPYeMbIX 10 XeHCTOKY Koa(duuueHToB. [IpuBenensl nBa npumepa. B nepsom
npuMepe Ko3(h(PULIMEeHTb UMeoT GeCKOHEUHYI0 TPOU3BOAHYI0 B Hyse. Bo BTopoMm mpumepe Ko3d-
(ULHEeHTH UMeIT GeCKOHEYHYI0 MPOU3BOAHYIO BO BHYTPEHHHUX TOYKaX.

KaroueBbie cioBa: nuHelHble nuddepeHINanbHble ypaBHeHuUs, 3anada Kouu, nHTerpan XeHcro-
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Introduction

In the classical initial value problem for a linear differential equation of the first
order

y'+p@)y =q(@), yla)=yo, =¢€lab] (1)
the coefficients p(z) and ¢(z) are continuous functions. However, some problems of dry
friction and electric circuit with relay are given the equations with the discontinuous
functions p and ¢. For example, the RL-electric circuit with relay is described by a

linear differential equation
di  R(t). e(t)

LT

with the discontinuous function R(¢). In this case, it is assumed that the functions p(x)
and p(x) are (L)-integrable and a function y(z) is called a solution to equation (1) if
y(x) is absolutely continuous and satisfies the equation (1) almost everywhere on [a, b].

There are no effective methods for the approximate solution of equations with un-
bounded coefficients p(z) and ¢(x). If the coefficients p(z) and ¢(x) are unbounded in
some neighborhood of the point a, then Runge - Kutta method does not work. If the
coefficients p(z) and ¢(x) are unbounded in some neighborhood of the interior point
¢ € (a,b), then Runge — Kutta method has a very large error, usually more than 1.

Some authors use Haar and Walsh functions to solve linear equations [1-3]. In [4,5]
G. Gat and R. Toledo propose to approach the solution y(z) by the Walsh polynomial

Un(z) = i Wi ().
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In [4] for continuous function ¢(x) (z € [0,1]) and p(x) = const, an estimate for the
error |y(z) — g(x)| is obtained. In [5] the authors consider the case when ¢ € L(0,1) is
a continuous function on [0, 1[ and prove that g,(x) converges uniformly to the solution
y(x) on the interval [0, 1].

In [6], the authors present the derivative ¢ of the solution y as a Haar expansion and
obtain an estimate of the approximate solution in terms of the modulus of continuity
of the coefficients p(z) and ¢(z). This method can also be used for equations with
unbounded coefficients p(z) and ¢(x).

In this article we will assume that p(z) and ¢(x) are Henstock integrable functions on
the interval [a,b]. We construct the approximate solution 7(z) and obtain the estimate of
the error |y(z) —g(z)| in terms of modulus of continuity w (e”), wi (e7"), and w1 (Q),
where P and @) are f-primitives for p and ¢ respectively.

The paper is organized as follows. In Sec. 1, we recall some facts from Henstock
integral. In Sec. 2, we indicate the necessary and sufficient condition, under which the
Cauchy problem has a solution. This solution is given in terms of the Henstock integral.
In Sec. 3, we construct the approximative solution and find the error. In Sec. 4, we give
two examples.

1. Henstock integral on the interval

Any function §(x) > 0 on [a,b] is said to be a gauge. Let X = (x;)}_, be a par-
tition of the interval [a,b]. The point & € [zx_1, 2] is called a tag of [xy_1, x|, the
set of ordered pairs ([xp_1,xx],& )7, is called a tagged partition and is denoted by
X= ([zr—1, 7x], &) =1

The tagged partition X= ([xx_1,xx], &)}, of the interval [a,b] is called o-fine and is
denoted by %<< o ifforany k=1,...,n

|zr—1 — k| < (&)

It is known that for any gauge d(x) > 0 on [a,b] there exists a ¢-fine partition
X= ([xk—la xk]a gk)Z:l of [CL, b]

A function f : [a,b] — R is said to be Henstock-integrable (or generalized Riemann-
integrable) on the interval [a, b] if there exists a number I(f) € R such that

Ve>0348(z)>0o0n bV X< d(x), |S&, f)—If)<e.

b
The number I(f) is called Henstock integral and is denoted by (R*) [ f(z)dz or

a

f fa)ds

The collection of all functions that are Henstock integrable on [a,b] is denoted by
R*(a,b). A function f : [a,b] — R is called absolutely integrable if f € R*(a,b) and
|f| € R*(a,b). There exist Henstock integrable functions that are not absolutely inte-
grable. If the function f : [a,b] — R is absolutely integrable, then f € L(a,b).

The function G : [a,b] — R is called a c-primitive (f-primitive) for a function ¢ if
G is continuous on [a,b] and there exists a countable (finite) set E C [a,b] such that
G'(x) = g(z) on [a,b]\E . We will use the following properties of Henstock integral.
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Theorem 1 ([7]). If [ : [a,b] — R has a c-primitive F' with a exceptional set E,
then f € R*(a,b) and for all x

/x f(t)dt = F(x) — F(a).
[t follows that for = € [a,b] \ E
el "yt = ().

Theorem 2 ([7]). Let f € R*(a,b) and F(x) = [ f(t)dt. The function f is abso-
lutely integrable on [a,b] if and only if \/"(F) < +oco. In this case,

b b
/ (1)l = \/(F).

Theorem 3 ([7]). If f € R*(a,b) and g is monotone on [a,b], then there exists
¢ € [a,b] such that

/ab f(z)g(x)dr = g(a) / 5 f(x)dz + g(b) /; f(x)da.

Theorem 4 ([7]). Let F and G be a c-primitives on [a,b|. Then F'G € R*(a,b) if
and only if FG' € R*(a,b). In this case,
b b
— / FG'dt.

a

/ b F'Gdt = F(t)G(t)

Theorem 5 ([7], Hake’s theorem). Let f : [a,b] — R and f € R*(a,c) for any
c € (a,b). Then f € R*(a,b) if and only if there exists

lim /Cf(:z:)da::[

c—b—0

In this case, I = (R*) f:f(a:) d.
A detailed exposition of the Henstock integral theory can be found in [7,8].

2. Linear differential equations and Henstock integral

Let p,q : [a,b] — R be two continuous functions that the differentiable on the interval
[a,b] with the exception of a countable set E. We will consider the classical Cauchy
initial value problem

Y+ (x)y=q(x), x¢€la,b]\E, (2)
y(a) = yo. (3)

[t follows from Theorem 1 that functions functions p'(x) and ¢'(z) are Henstock
integrable. This is a weaker condition than p’,¢" € L(a,b).
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Example 1. Define the function ¢ on [a,b] in the following way. Let z, = a + %2
Assume g¢(a) = q(z,) = 0,q(F5E) = g(z) is lineal on [z,.1, 5] and

1
[—x"f"“,xn]. Then ¢’ € R*(a,b), but ¢ ¢ L(a,b).

Theorem 6. Equation (2) has a continuous solution that is differentiable on the
set [a,b] \ E if and only if the function e?™® ¢ (z) has a c-primitive differentiable on
la,b] \ E.

Proof. Necessity. Let y(x) be a solution of (2), that is

y'(x) + ' (@)y(x) = ' (x)
for all z € [a,b] \ E. Then
"y (@) + p/ (@)y(2)e"™) = ¢/ ()™
for all z € [a,b] \ E or in another words

(y(a:)ep(”))’ = q/(x)ep(m) (x € [a,b] \ E). (4)

It means that the function ¢'(z)e?® has c-primitive y(z)eP®).
Sufficiently. Let ¢/ (z)e?™) has c-primitibe F(x), that is

F'(z) = ¢ (z)e’™ € [a,b] \ E.

Let us denote y(z) = L9 & F(z) = y(z)e?®@ (z € [a,b] \ E). Then

eP(I)

Vaelat)\E y(2)e!'? +y(2)e"Pp () = ¢ (@)’ & y'(2) + y(o)p'(2) = ¢ (x). 5

Corollary. A solution of Cauchy initial value problem (2)-(3) is given by the
formula

y(x) = ep(a)—p(w)g(a) + e P@) / q'(t)ep(t) dt,
where an integral is the Henstock integral.

Proof. It follows from Equality (4) that the function y(z)eP® is c-primitive for
¢'e?®) it means ¢'eP® is Henstock integrable and the equality

/ ¢ (D dt = y(2)e"® — y(a)e®

holds. 0

Example 2. [t is possible to construct the continuous functions p and ¢ so that
the function ¢/(x)eP™® has a c-primitive, but ¢'(x)e?™ ¢ L(a,b). For simplicity, we
consider the case [a,b] = [0,1] and select the function ¢(z) as in Example 1. In
this case =, = 27", q(z,) = ¢(0) = 0, ¢(x) is lineal on [z,41,&,] and [&,, z,], where
&0 = 5(2z + 2511). Now we define the function p(z) by the conditions:

(@) e’ =B, >1,8,11(n— 0);

(b) €@ is lineal on any interval [27"71 27"
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[t is evident that the series

[ee) 2—k
Z / q’(:v)ep(x) dz
n=1 27kt

converges. It follows from the Hake theorem that f(z) = ¢/(x)e?™® € R*(0,1). Therefore
the function F(z) = [ f(t)dt is continuous. Since the function f(z) = ¢'(z)e’™ is
continuous on any interval (2771, 27"), it follows that F'(z) = ¢'(2)e?™® on any interval
(27m=1,27"). It means that F(z) is c-primitive for ¢'(z)e?®. It is not difficult to check
that f(z) = ¢'(x)eP® ¢ L(0,1).

3. Approximate solution of Cauchy problem (2)—(3) on interval [0,1]
Now we will find an approximate solution of Cauchy initial value problem

(9)
(6)

We assume that the functions p and ¢ are continuous and have derivatives with the
exception of some countable set £. We also assume that e?®)¢/(z) has a c-primitive
differentiable on [a,b] \ E.

We choose an arbitrary n € N, define the functions p(z) and ¢(x) by equalities

k) k (kY [k
p 2n - p 2n ) q 2n - q 2n )
sy = p £\ o X k+1) (k& E_k k1]
p T _p 2n T 2n p 2n p 2n ) x 2n’ 2n )
o —a B ok k+1) (& e_k: k41
9\r)=4q on r omn q on q n ’ x on’  9n
and consider the Cauchy initial value problem
J+pi=4, (7)
y(0) = wo. (8)

It is evident that the function ¢?™®)§ has a f-primitive. By Theorem 6 the functions

T

y(z) = yoeP O PE) 4 o—P@) /q’(t)ep(t) dt,

0
T

§(z) = yoePO7e) | 5te) / 7(1)eP® dt
0
are solutions of Cauchy problems (5)-(6) and (7)-(8) respectively. The function 7(x)

is the approximate solution of Cauchy problem (5)-(6). In the following theorem, we
indicate an estimate for the distance y(z) — 7(x).
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Theorem 7. The following inequality
ly(2) — §(@)] < Crwy (€77) + Crowy () + w1 (@)Co + Cowry (@), (p),

2

holds, where

1 1
C_1 = |yole”® + 1€ ]| o) \/q, C1 = 2[[e?]|cpo, \/(L
0 0

1

Co = [le’llcroy + €’ llcron \/ep7 Cy = [e?[[20.y-
0

Proof. 1. First we estimate the difference y(z) — j(z) for v = 35,k = 0,1, ...,2". We

have

k_
i) =~ 5(w) = ) [( (0 - () dt =
0

Y=

Kk
k ‘VL
am )
= ¢ Plem) / (¢'(t) = G (t)e!D dt + e (z%) / — PN dt =1, + L.
0
0

To estimate integrals in [; and I, we will assume that p’ and ¢’ — are Henstock

absolutely integrable. ‘ '
Assume I,. Integrating by parts and using the equality ¢'(5) = ¢'(5%5) we obtain

So

2mn

L] < llelleonw g () |/ e
0

Since the function e”® is monotonic on any interval [Qj—n,ginl], it follow that

|(e?® — D] L w e (eP()). Therefore

1

ol < [l wp () \ a(-),
0

and

() -9 (5 )| <1 lcns (w;((-»\:/eﬂwm @)\ gt )

0
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2. Now we consider the case z € [Z, £t1]. Let us write the difference y(z) — g(z)
in the form
y(z) —j(z) = yoep(o)(e—p(w) — —ﬁ(w))+
L
+(e7P@) — 7P(@)) /q /q/(t)ep(t) dt | +
0 7
2 &
277, 271
+e P / ¢ (t)er™ at / q)e’V at | +
0 0
k.
2n z
+e7P(@) / ¢ (t)e?™ dt — / )PV dt | = Aj 4 Ay + (Ag + Ay)e P, (9)
We will estimate A4, (I =1,2,3,4). ’
2.1. Since the function e 2 o) is monotonic on any interval [, ginl] it follow that
|e—p(x) — e—ﬁ(w)| < w%n(e_p). (10)
2.2. Using (10) again, we get
el <y (77) / 0 dt| < wy (e HGPHCM]\/Q (1)

2.3. An estimate for A; was obtained earlier

|43 < ((w;xq))\/epw;(ef”)\/q) : (12)

2.4. Let us write A, in the form

Ay = /q’(t)(ep(t) — eﬁ(t)) dt + /6ﬁ(t)(q'(t)(j') dt. (13)
B B
2mn PI
Since the function e’ is monotonic on the interval [2, £t1]) both integrals exist. For

the first integral, we have the obvious inequality

T

/ ¢ (1)@ — PO)dt <y ()

K
2n

1

q @) dt <w, () g

0

x>
g‘t \"5\”

Integrating by parts the second integral in (13) we have

/eﬁ(t)(q’(t)—q’(t))dt < lg(@) = (@) + w1 (q) / ("] dt <
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(
A

N

i
<w(9) +wa(g) / PO (1) dt| <
Kk

N

wa (@) + w1 (@)l

2

k—+1 k
p(550) = ()] € on @+ 1lonsey )

Finally, we obtain

[

As| w1 ()N g +ws (@0 + e llep e, (9): (14)

1
oM

Substituting inequalities (10), (11), (12), and (14) in (9) we get

1
ly(a) = §(2)] < lyole" Vw1 (e7) +w (el cpon \ o+
0

omn

1 1
+lle?llco (W;L(Q)\/ep‘FWan(@p)\/Q) +

0 0

1
+le”lep.y (w;ﬂ(ep) \/q tw (@)1 + H€pHC[O,1]W21n(p))> -

0

=Cw (e7) + Cw () +wa (¢)Co + Caw s (q)w s, (p)- 0

4. Some examples

Example 3. Let us consider the Cauchy problem
/ 1 _ 1

y+my_1+\/57 xE[O,l], (15)
y(0) = 0.

Here p(z) = x, q(x) = = + 2y/x. The solution y(x) = 2/x of this problem is a
continuous function on [0,1], but the derivative y’(0) does not exist. We denote by
g(x) the approximative solution for some N = 2" > 1. In the Table 1 we give the
approximative solution of Cauchy problem (15).

Table 1
The approximative solution of Cauchy problem (15)

x y(x) g(x) for N

N=16 | N=32 | N=64 | N =128
0.000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
0.125 | 0.70710 | 0.70485 | 0.70629 | 0.70681 | 0.70700
0.250 | 1.00000 | 0.99793 | 0.99927 | 0.99974 | 0.99991
0.500 | 1.41421 | 1.41244 | 1.41359 | 1.41399 | 1.41413
0.750 | 1.73205 | 1.73050 | 1.73151 | 1.73186 | 1.73198
1.000 | 2.00000 | 1.99862 | 1.99952 | 1.99983 | 1.99994

In this table y(x) is the sharp solution, g(z) is the approximative solution.
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Example 4. Let us consider the Cauchy problem

Yy +p(@)y=q(x), ze€l01], 16
{y(O) =0, 1o
where
Vi if x €10,1/3],

px) =4 (2/3— V3 ifxe(1/3,2/3)
x—2/3 if x €1[2/3,1],

ﬁi if z €10,1/3],
px)={—V3 if v €[1/3,2/3],
2\/;7_2/3 if z €2/3,1],
S +\r—2/3 it 2 €[0,1/3],
q(z) = —z(2+V3) + 322 + % if x €[1/3,2/3],
5+ —2/3-1 if x € [2/3,1],
s+ ) if x €]0,1/3],
d(x) =4 —2—V3+3x ifxe(l/3,2/3],
1+ \/951——2/3) if x €[2/3,1].
The solution
\/Ev x € [0’1/3]7

y(r) =< V3(2/3 —x), x€[1/3,2/3],
x—2/3, x € [2/3,1],

of this problem is a continuous function on [0, 1], but the derivatives y/(1/3), v'(2/3),
y'(0) do not exist.

In the Figure we demonstrate graphs of the approximate and exact solutions. Both
graphs are drawn on 512 points. First, we drew a graph of the approximate solution
(blue color), then a graph of the exact solution (red color). We see that these graphs
coincided.

0.6

o N\ yd
| N it
" \ S e
1/ N4
Clf Ny

f N

0.2 0.4 0.6 0.8 1.0 x

Fig. The graphs of g(z) (blue) and y(z) (red)
for 2" = N = 512 (color online)
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We denote by ¢, (x) the approximative solution for the point system (j27)

on

Jj=0

and

0, = max; |,(727") — y(j27™)|. In the Table 2 we give the error of the approximative
solution of Cauchy problem (16) for n = 4, 10.

Table 2
The error of the approximative solution for 2"
n 4 5 6 7 8 9 10
on 16 32 64 128 256 512 1024
Sp | 1.1-107% [ 53-107* | 1.8-107* | 86-107° [ 2.8-107° | 1.2-107® | 3.9-107°
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