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Abstract. The article presents mathematical and computer models which allow to study the elec-
trophysical properties (permittivity, impedance) of a multicellular structure exposed to nanosec-
ond electrical pulses. The paper proposes a simulation approach that includes complex use of the
classical theory of describing the electrodynamic properties of dispersed systems and the effec-
tive medium theory. We describe cell geometry using Gielis equations, which allow us to take
account of the irregular shapes of cell membranes. We carry out a computational experiment
with cell models to study the frequency dependences of permittivity and impedance exposed to
nanosecond electrical pulses. The article considers the influence of membrane porosity on cell
conductivity and permittivity as well. We carry out computer simulation of the plasma membrane
electroporation mechanism. The obtained results will help to understand better the fundamental
processes in the cell membrane exposed to electrical pulses and can be used in various practical
applications, such as targeted drug delivery, incorporation of DNA and RNA genes into bacterial
and mammalian cells, as well as the selective destruction of cancer cells.
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AnHoTtanusa. B crathe npuBomsATCS MaTeMaTHUeCKHE W KOMIbIOTEPHbIE MOJEJH, TO3BOJSIOLIHE
MCC/IeN0BaTh 3JeKTpo(ru3nyecKre CBOUCTBA (IHU3/NEKTPUUECKYI0 TPOHHUIAEMOCTb, HMIIENAHC)
MHOTOKJIETOUHOH CTPYKTYPBl TIPU BO3IEHCTBUM HAHOCEKYHJIHBIX 3JEKTPHUECKHX HMIMYJabCOB. B
paboTe TpenJaraetcs MOAXOA MOIEJHUPOBAHHUS, BK/IIOYAOMIMN B ce0s1 KOMIIJIEKCHOE HCIOJIb30BaHe
KJIACCHYECKOH TEOPHM OIMHCAHHUS 3JeKTPOAMHAMUYECKUX CBOHCTB IMCIEPCHBIX CHUCTEM H TEOPUH
3ppexTuBHON cpenbl. s OMUCAaHHS TEOMETPUM KJETOK HCMoJb3ytoTes (opmynsl Jlxumnca,
KOTOpble MO3BOJISIOT YUYUTBIBATH HEMpPaBUJbHBIE (POPMBI KJAeTOYHbIX MeMmOpaH. [IpoBeneH BbIUHC-
JIUTEJIbHBIH KCIEPUMEHT C MOIEJNSMH KJETOK IO HCCJAeIOBAHHMIO YaCTOTHBIX 3aBUCHMOCTEH IH-
3/IEKTPUYECKOH MPOHMIAEMOCTH W MMIeIaHca TPU BO3AEHCTBHM HAHOCEKYHIHBIX 3JEKTPUUYECKHUX
UMITYJIbCOB. M3ydeHOo BiHMsiHMEe MeMOpPaHHOH MOPHUCTOCTH HAa TPOBOAMMOCTb U IMIJIEKTPHUECKYIO
MPOHULIAEMOCTb KJeTKH. [IpoBeneHO KOMIbIOTEPHOE MOIENHPOBAaHHE MeXaHHM3Ma 3JEKTporopa-
UK TJ1a3MaThdecKod MeMmOpaHbl. [losyueHHBIE pesysnbTaThl OYAyT MoJie3HBl AJs Oojiee Tay6o-
KOTO MOHHMaHMs (PyHIaMeHTaJbHBIX TPOLECCOB, MPOUCXOASALINX B KJIETOUHOH MeMOpaHe MpU HUM-
MyJbCHOM 3JIEKTPUUECKOM BO3IEHCTBHH, U MOTYT HCIHOJb30BATHCS B PA3/JMYHBIX MPAKTUYECKUX
MPUJIOKEHHUSX, TAKUX KaK ajgpecHasi nocTaBKa JekapcTs, BkiaoueHusi reHoB JHK u PHK B 6ak-
TepHasbHble KJEeTKH U KJETKH MJEKONUTAIUINX, a TaKKe U30UpaTebHOM YHUUYTOKEHHH PAKOBBIX
KJIETOK.
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Introduction

Field experiments which are carried out to study the cell membrane electroporation
mechanism are time-consuming, expensive and require high-precision calibration of the
equipment, as well as careful preparation of the object of study [1]. The main task
during the experiment is to obtain the most reliable data at minimum cost. We find
dependencies between factors as a part of the study, construct an approximation of the
response function of various orders, perform a sensitivity analysis and determine the
probability of one kind or other event.

Analysis of scientific literature [2-5] shows that short rectangular pulses are used in
the overwhelming number of studies. For instance, Maxwell’s equation is used to calcu-
late the transmembrane electric potential induced by an external electric field in a spher-
ical cell. As a consequence of the electric shock, temporary pores are formed in the cell
membrane, thus increasing its permittivity. Electroporation conditions change depend-
ing on the type of substance introduced into the cells. The electroporation method [6],
awarded the Nobel Prize in Chemistry 2003, is a needle-free alternative to classical
mesotherapy. Seriousness of the method is confirmed by its active use in the field
of medicine. Nowadays electroporation is the only non-injection effective method of
transporting an active substance to skin cells while maintaining the maximum possible
concentration — more than 90% [7].

Mathematical and computer simulation is a powerful tool for theoretical research in
biophysics [8]. Development of mathematical models opens up a wide range of possi-
bilities for a multimethod research of electroporation mechanism. It happens because
parameter structure of mathematical models physically corresponds to the objects of
study. Computer simulation as a research method denotes the concept of an iterative
paradigm of the computational experiment, since we define a mathematical model more
precisely, improve the computational algorithm and, in some cases, revise computational
process organization in the experiment.

Analysis of such models allows to predict the most favorable conditions for their
subsequent experimental study. In addition, it also allows to acquire new fundamental
knowledge about dynamics of the cell membrane exposed to electromagnetic pulses. It
helps to apply practical knowledge to medicine, cosmetology and other fields of science
and technology in the future. Mathematical and computer modeling to study the effect
of electrical pulses on biological objects is a relevant field of research, which allows to
obtain detailed information about the object of study as well as data for further full-scale
experiment and prediction of experiment results.

In the study we use a complex approach to carry out mathematical simulation of the
electrophysical properties of cell membranes exposed to nanosecond electrical pulses.
The approach includes the classical theory of describing the electrodynamic properties
of dispersed systems and the effective medium theory [9].

1. Mathematical simulation of the electrophysical properties of a cell

The object of study is a multicellular structure exposed to uniform pulses of an
electric field and consisted of arbitrarily shaped cells (Fig. 1), each of which has a
plasma membrane and an intracellular organelle.

Every cell is described by the following values: €. — complex permittivity of a cell;
0. — conductivity of a cell; €, — complex permittivity ol a cell membrane; o, — con-
ductivity of a cell membrane, ,,, — conductivity of a cell organelle, ¢,,, — complex
permittivity of an organelle membrane. The following parameters simulate cell geomet-
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Fig. 1. Schematic image of a cell exposed to uniform pulses of an electric field

ry: rij, T;j, ¥i; — position vector and rectangular coordinates, which describe lateral
view of a cell, 6;; — polar angle, which characterizes a local coordinate system of
a membrane; 7., Tmn, Ymn — Position vector and rectangular coordinates, which
describe lateral view of an organelle, 6,,, — polar angle, which characterizes a local
coordinate system of an organelle, h, — thickness of a plasma membrane, h,, —
thickness of an organelle membrane.

We use Maxwell’s equations in dispersed media to describe electrophysical properties
of a multi-cell structure:

VxH=¢g224+240E, (1)

The simulation approach is quite common and used in many studies, e.g. [10,11].
The system of equations is rather difficult to solve for realistic multicellular structures.
However, due to the small size of a cell, we can neglect the change in the magnetic
field over time, hence V x E = 0. An electric field E can be derived from the scalar
potential ¢ using the equation:

E=-Vo. (3)
Substituting (3) for (1), we obtain the following partial differential equation:
V- (2052 +0Ve— L) =0, (4)

where o is static ionic conductivity. The following boundary conditions are imposed to
the mathematical model to satisfy the continuity equation V x J = 0:

- (Jlpr = Jr-) =0, ()

where
J=(0+e2)E+ 9L (6)

' and I'~ are outer and inner boundaries of cell membranes, respectively, 7 is normal
vector, which is taken outside the membrane boundaries. The electric potential for
each cell is calculated by root-finding algorithm (4). The transmembrane voltage U, ;
is calculated as the difference between the electrical potential at the outer and inner
boundaries (¢;; and ¢;; respectively) of each cell membrane:

Uij=¢;; — i (7)

1,J (VN

262 HayyHbir otaen



R. P. Kim, S.A. Korchagin. Mathematical and computer simulation :

We propose to use the effective medium theory to simulate complex permittivity
of a multicellular structure. The study considers cells from 10 to 100 micrometers,
frequency of the electromagnetic radiation wave is 3-30 GHz, the wavelength of the
electromagnetic field is by an order of magnitude more than the cell size, so the
simulation method is acceptable for use.

We can use the Rayleigh equation to describe complex permittivity of a multicellular
structure [12]

3V
Em = E¢ 1 + 5h+25mv 131 r—— s (8)
eh—em entgen®

where ¢, is complex permittivity of a multicellular structure, ¢, is complex permittivity
of the matrix, V' is cell volume fraction in the medium. Permittivity of a cell is calculated
by modifying the equations which were obtained in [13]:

agorg (359 + (a—1) (5g + 250rg)> —&c (3507’9 +(a—1) (59 + 2507‘9))
P e ((a— 1) €y + 2 (00 + 1) Eorg) + Eorg (0 + 2) £y + 2 (& — 1) Eorg)
+ (1 — prav) ey, = 0,

o Eora (Beg+ (v — 1) (g4 + 2€0rg)) — €c (Beorg + (@ — 1) (g4 + 25org))+ )
P2 e (@ — 1) €y + 2 (@ + 1) €org) + Eorg (0 + 2) £, + 2 (& — 1) Eorg)
Eg—€
+ (1= paor) F— =0,

Eg + Eorg

=y
where ¢, is permittivity of a cell nucleus, p; = m is volume fraction of the plasma
membrane to the total cell volume, py = 7“3”—"3 is volume fraction of the organelle

(Tm,n+horg)
membrane to the total organelle volume, o = 73 3

2,7 m,n’

Cell geometry is simulated by Gillis equations:

xi,j = Ai,jRi,j (91'0‘) COS Gi,j, (10)
yivj = Bi,jRi,j (91‘7]‘) sin 0i,j7 (1 1)
cos( Mi2im10ig ) gin (™2™ “hy
Ri, (6i,) = cos(ZAT) I e ) ’ (12)
Qi 25-1 Qi,2j

where i = 1,...,p and j = 1,...,q and M = pq is a total number of cells and mem-
branes, 6, ; € [—m; 7] is a polar angle, which characterizes a local coordinate system,
mi2i—1, Mi25, Ti25j—1, T 2j and bi,j € }%Jr (positive real numbers), Qi 25—1, O 2j € RS_
(strictly positive integers), A;;, B;; are scale parameters, R;; is a position vector of
the corresponding cell profile.

2. Computer simulation of the electroporation mechanism

We develop a computer model and carry out the computational experiment to study
the electroporation mechanism of a multicellular structure. We use an algorithm for in-
terpreting a full-scale experiment with an “ex vivo” method. Figure 2 shows a capacitor
discharge circuit for generation of an exponentially decaying electric field pulse of a
multicellular structure simulated using NI Multisim software package.
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We use a multicellular structure
| PC with dimensions of 30x30x3 mm in
S Oscilloscope 1 the computational experiment. We use

AR = values in the range of 4-5 kOhm
(1) Ve —C = as the initial data of the impedance
value of the object of study. The
Electrodes values are obtained as a result of a
full-scale experiment in the research
paper [14]. A computer model allows
Fig. 2. .Corpputer mode} of a capacitor .dis- to study 160 samples, which are di-
charg'e circuit fgr generahon of an expogenhally vided into 4 groups depending on the
decaying electric field pulse to a multicellular voltage applied to the object of study
structure (230, 550, 750, and 1000 V for each
group, respectively). If the electric properties change, the current which flows through
a multicellular structure is calculated by the voltage change in the electrodes. We use a
model of a 4-channel digital oscilloscope with the following characteristics: bandwidth
(3.5 GHz), sampling frequency (10 GHz) in the computational experiment.

)

Multicellular structure

3. Results and discussions

Figure 3, a shows a dependency graph of voltage on the time of exposure to an
electric field pulse for each sample group. The graph shows that voltage increases
significantly in the range of 25-30 ns until it reaches its maximum value and then
exponentially decreases. It means that the electrophysical properties of a multicellular
structure can significantly change under the influence of electrical nanopulses. Figure 3,
b shows dependence of the impedance of a multicellular structure on the volume fraction
of cells in the medium.

UV — & T z, kOhm
10001 N 1 Tr
800[ group 4 1 or
600F .- - st
‘ “—.group 3
400¢ e 4t
—group2 |
200 //\\w 3t
L ! L 1 | L | L ! 0 I 1 I I i
00 10 20 30 40 50 60 70 80 90¢ ns 0 200 400 600 800 1000 U V
a b

Fig. 3. Dependence of voltage on the time of exposure to an electric field pulse (a) and
dependence of the impedance of a multicellular structure on the volume fraction of cells in
the medium (b)

The computational experiment shows that impedance drops significantly near the
peak of the electric field pulse and then changes insignificantly. High intensity of elec-
trical pulses results in slower impedance recovery. Hence, time values of electrical
pulses of 40-100 ns approximately have a greater effect on the cell membrane recovery.

Figure 4 shows dependence of permittivity of a multicellular structure on the wave-
length of external factors. Simulation results show resonant bursts which can be con-
nected to relaxation phenomena of the nuclear membrane and plasma membrane polar-
ization.
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Fig. 4. Dependence of permittivity of a mul-
ticellular structure on the wavelength of
external factors

Conclusion

The paper presents a simulation approach that includes complex use of the classical
theory of describing the electrodynamic properties of dispersed systems and the effective
medium theory. Gielis equations provide a wide range of possibilities for simulation of
multicellular systems of various geometric configurations. As a result of the study, we
find out that the electrophysical properties of a multicellular structure exposed to elec-
trical nanopulses can significantly change. We study the dynamics of the electrophysical
properties of a multicellular structure against the frequency of external force and the
duration of the electric field pulses as well. We set time values of electrical impulses
which have a greater effect on the cell membrane recovery. The obtained results will
help to understand better the fundamental processes which occur in the cell membrane
exposed to electrical pulses and can be used in various practical applications, such as
targeted drug delivery, the incorporation of DNA and RNA genes into bacterial and
mammalian cells, as well as the selective destruction of cancer cells.
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