







# Научный отдел



# **МАТЕМАТИКА**

Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2021. Т. 21, вып. 3. С. 282–293 *Izvestiya of Saratov University. Mathematics. Mechanics. Informatics*, 2021, vol. 21, iss. 3, pp. 282–293

https://mmi.sgu.ru

https://doi.org/10.18500/1816-9791-2021-21-3-282-293

Article

# Reconstruction formula for differential systems with a singularity

# M. Yu. Ignatiev

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia

**Mikhail Yu. Ignatiev**, ignatievmu@sgu.ru, mikkieram@gmail.com, https://orcid.org/0000-0002-4354-9197

**Abstract.** Our studies concern some aspects of scattering theory of the singular differential systems  $y' - x^{-1}Ay - q(x)y = \rho By$ , x > 0 with  $n \times n$  matrices  $A, B, q(x), x \in (0, \infty)$ , where A, Bare constant and  $\rho$  is a spectral parameter. We concentrate on the important special case when  $q(\cdot)$  is smooth and q(0) = 0 and derive a formula that express such  $q(\cdot)$  in the form of some special contour integral, where the kernel can be written in terms of the Weyl-type solutions of the considered differential system. Formulas of such a type play an important role in constructive solution of inverse scattering problems: use of such formulas, where the terms in their right-hand sides are previously found from the so-called main equation, provides a final step of the solution procedure. In order to obtain the above-mentioned reconstruction formula, we establish first the asymptotical expansions for the Weyl-type solutions as  $\rho \to \infty$  with  $o(\rho^{-1})$  rate remainder estimate.

**Keywords:** differential systems, singularity, integral equations, asymptotical expansions

**Acknowledgements:** This work was supported by the Russian Foundation for Basic Research (projects Nos. 19-01-00102, 20-31-70005).

**For citation:** Ignatiev M. Yu. Reconstruction formula for differential systems with a singularity. *Izvestiya of Saratov University. Mathematics. Mechanics. Informatics*, 2021, vol. 21, iss. 3, pp. 282–293 (in English). https://doi.org/10.18500/1816-9791-2021-21-3-282-293

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0)



Научная статья УДК 517.984

# Формула восстановления для систем дифференциальных уравнений с особенностью

### М. Ю. Игнатьев

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского, Россия, 410012, г. Саратов, ул. Астраханская, д. 83

**Игнатьев Михаил Юрьевич**, кандидат физико-математических наук, доцент кафедры математической физики и вычислительной математики, ignatievmu@sgu.ru, mikkieram@gmail.com, https://orcid.org/0000-0002-4354-9197

**Аннотация.** В работе изучаются некоторые аспекты теории рассеяния для сингулярных систем дифференциальных уравнений  $y'-x^{-1}Ay-q(x)y=\rho By,\ x>0$  со спектральным параметром  $\rho$ , где  $A,B,q(x),x\in(0,\infty)-n\times n$  матрицы, причем матрицы A,B постоянны. В данной работе мы рассматриваем важный частный случай, когда матрица-функция  $q(\cdot)$  является гладкой и q(0)=0. В этом случае для  $q(\cdot)$  получено выражение в виде контурного интеграла, где ядро записывается в терминах решений типа Вейля рассматриваемой системы. Формулы такого типа играют важную роль в конструктивном решении обратных задач рассеяния: применение формул, где величины, стоящие в правой части, предварительно найдены из так называемого основного уравнения, является завершающим шагом процедуры решения. Для вывода указанных формул восстановления мы предварительно устанавливаем асимптотики решений типа Вейля при  $\rho \to \infty$  с оценкой остаточного члена  $o\left(\rho^{-1}\right)$ .

**Ключевые слова:** системы дифференциальных уравнений, сингулярность, интегральные уравнения, асимптотические разложения

**Благодарности:** Работа выполнена при финансовой поддержке РФФИ (проекты № 19-01-00102, 20-31-70005).

**Для цитирования:** *Ignatiev M. Yu.* Reconstruction formula for differential systems with a singularity [*Игнатьев М. Ю.* Формула восстановления для систем дифференциальных уравнений с особенностью] // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2021. Т. 21, вып. 3. С. 282–293. https://doi.org/10.18500/1816-9791-2021-21-3-282-293

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (СС-ВҮ 4.0)

#### Introduction

Our studies concern some aspects of scattering theory of the differential systems

$$y' - x^{-1}Ay - q(x)y = \rho By, \quad x > 0$$
 (1)

with  $n \times n$  matrices  $A, B, q(x), x \in (0, \infty)$ , where A, B are constant and  $\rho$  is a spectral parameter.

Differential equations with coefficients having non-integrable singularities at the end or inside the interval often appear in various areas of natural sciences and engineering. For n=2, there exists an extensive literature devoted to different aspects of spectral theory of the radial Dirac operators, see, for instance [1-5].



Systems of the form (1) with n > 2 and arbitrary complex eigenvalues of the matrix B appear to be considerably more difficult for investigation even in the "regular" case of A = 0 [6]. Some difficulties of principal matter also appear due to the presence of the singularity. Whereas the "regular" case of A = 0 has been studied fairly completely to date [6–8], for system (1) with  $A \neq 0$  there are no similar general results.

In this paper, we consider the important special case when  $q(\cdot)$  is smooth and q(0)=0 and, provided also that the discrete spectrum is empty, derive a formula that expresses such  $q(\cdot)$  in the form of some special contour integral, where the kernel can be written in terms of the Weyl-type solutions of system (1). Formulas of such a type play an important role in constructive solution of inverse scattering problems: use of such formulas, where the terms in their right-hand sides are previously found from the so-called *main equation* (see, for instance, [9, 10]), provides a final step of the solution procedure. In order to obtain the above-mentioned reconstruction formula we establish first the asymptotical expansions for the Weyl-type solutions as  $\rho \to \infty$  with  $o(\rho^{-1})$  rate remainder estimate.

# 1. Preliminary remarks

Consider first the following unperturbed system

$$y' - x^{-1}Ay = \rho By \tag{2}$$

and its particular case corresponding to the value  $\rho=1$  of the spectral parameter

$$y' - x^{-1}Ay = By, (3)$$

but to complex (in general) values of x.

**Assumption 1.** Matrix A is off-diagonal. The eigenvalues  $\{\mu_j\}_{j=1}^n$  of the matrix A are distinct and such that  $\mu_j - \mu_k \notin \mathbb{Z}$  for  $j \neq k$ , moreover,  $\operatorname{Re}\mu_1 < \operatorname{Re}\mu_2 < \cdots < \operatorname{Re}\mu_n$ ,  $\operatorname{Re}\mu_k \neq 0$ ,  $k = \overline{1, n}$ .

**Assumption 2.**  $B = diag(b_1, \ldots, b_n)$ , the entries  $b_1, \ldots, b_n$  are nonzero distinct points on a complex plane such that  $\sum_{j=1}^{n} b_j = 0$  and such that any three points are noncolinear.

Under Assumption 1 system (3) has the fundamental matrix  $c(x) = (c_1(x), \dots, c_n(x))$ , where

$$c_k(x) = x^{\mu_k} \hat{c}_k(x),$$

 $\det c(x) \equiv 1$  and all  $\hat{c}_k(\cdot)$  are entire functions,  $\hat{c}_k(0) = \mathfrak{h}_k$ ,  $\mathfrak{h}_k$  is an eigenvector of the matrix A corresponding to the eigenvalue  $\mu_k$ . We define  $C_k(x,\rho) := c_k(\rho x)$ ,  $x \in (0,\infty)$ ,  $\rho \in \mathbb{C}$ . We note that the matrix  $C(x,\rho)$  is a solution of unperturbed system (2) (with respect to x for given spectral parameter  $\rho$ ).

Let  $\Sigma$  be the following union of lines through the origin in  $\mathbb{C}$ :

$$\Sigma = \bigcup_{(k,j): j \neq k} \left\{ z : \operatorname{Re}(zb_j) = \operatorname{Re}(zb_k) \right\}.$$

By virtue of Assumption 2 for any  $z \in \mathbb{C} \setminus \Sigma$  there exists the ordering  $R_1, \ldots, R_n$  of the numbers  $b_1, \ldots, b_n$  such that  $\operatorname{Re}(R_1 z) < \operatorname{Re}(R_2 z) \cdots < \operatorname{Re}(R_n z)$ . Let  $\mathscr S$  be a sector  $\{z = r \exp(i\gamma), r \in (0, \infty), \gamma \in (\gamma_1, \gamma_2)\}$  lying in  $\mathbb{C} \setminus \Sigma$ . Then, according to [11],



system (3) has the fundamental matrix  $e(x) = (e_1(x), \dots, e_n(x))$  which is analytic in  $\mathscr{S}$ , continuous in  $\overline{\mathscr{S}} \setminus \{0\}$ , and admits the asymptotics

$$e_k(x) = e^{xR_k}(\mathfrak{f}_k + x^{-1}\eta_k(x)), \quad \eta_k(x) = O(1), \quad x \to \infty, \quad x \in \overline{\mathscr{S}},$$

where  $(\mathfrak{f}_1,\ldots,\mathfrak{f}_n)=\mathfrak{f}$  is a permutation matrix such that  $(R_1,\ldots,R_n)=(b_1,\ldots,b_n)\mathfrak{f}$ . We define  $E(x,\rho):=e(\rho x)$ .

Everywhere below we assume that the following additional condition is satisfied.

**Condition 1.** For all  $k = \overline{2, n}$  the numbers

$$\Delta_{0k} := \det(e_1(x), \dots, e_{k-1}(x), c_k(x), \dots, c_n(x))$$

are not equal to 0.

Under Condition 1 system (3) has the fundamental matrix  $\psi_0(x) = (\psi_{01}(x), \dots, \psi_{0n}(x))$  which is analytic in  $\mathscr{S}$ , continuous in  $\overline{\mathscr{S}} \setminus \{0\}$  and admits the asymptotics:

$$\psi_{0k}(xt) = \exp(xtR_k)(\mathfrak{f}_k + o(1)), \quad t \to \infty, \quad x \in \mathscr{S}, \quad \psi_{0k}(x) = O(x^{\mu_k}), \quad x \to 0.$$

We define  $\Psi_0(x,\rho) := \psi_0(\rho x)$ . As above, we note that the matrices  $E(x,\rho)$ ,  $\Psi_0(x,\rho)$  solve (2).

In the sequel we use the following notations:

- $\{\mathfrak{e}_k\}_{k=1}^n$  is the standard basis in  $\mathbb{C}^n$ ;
- $\mathscr{A}_m$  is the set of all ordered multi-indices  $\alpha = (\alpha_1, \ldots, \alpha_m), \ \alpha_1 < \alpha_2 < \cdots < \alpha_m, \ \alpha_j \in \{1, 2, \ldots, n\};$
- for a sequence  $\{u_j\}$  of vectors and a multi-index  $\alpha=(\alpha_1,\ldots,\alpha_m)$  we define  $u_\alpha:=u_{\alpha_1}\wedge\cdots\wedge u_{\alpha_m};$
- for a numerical sequence  $\{a_i\}$  and a multi-index  $\alpha$  we define

$$a_{\alpha} := \sum_{j \in \alpha} a_j, \quad a^{\alpha} := \prod_{j \in \alpha} a_j;$$

- for a multi-index  $\alpha$  the symbol  $\alpha'$  denotes the ordered multi-index that complements  $\alpha$  to (1, 2, ..., n);
- for  $k = \overline{1, n}$  we denote

$$\overrightarrow{a}_k := \sum_{j=1}^k a_j, \quad \overleftarrow{a}_k := \sum_{j=k}^n a_j, \quad \overrightarrow{a}^k := \prod_{j=1}^k a_j, \quad \overleftarrow{a}^k := \prod_{j=k}^n a_j.$$

We note that Assumptions 1,2 imply, in particular,  $\sum\limits_{k=1}^n \mu_k = \sum\limits_{k=1}^n R_k = 0$  and therefore for any multi-index  $\alpha$  one has  $R_{\alpha'} = -R_{\alpha}$  and  $\mu_{\alpha'} = -\mu_{\alpha}$ .

• the symbol  $V^{(m)}$ , where V is an  $n \times n$  matrix, denotes the operator acting in  $\wedge^m \mathbb{C}^n$  so that for any vectors  $u_1, \ldots, u_m$  the following identity holds:

$$V^{(m)}(u_1 \wedge u_2 \wedge \cdots \wedge u_m) = \sum_{j=1}^m u_1 \wedge u_2 \wedge \cdots \wedge u_{j-1} \wedge Vu_j \wedge u_{j+1} \wedge \cdots \wedge u_m;$$

- if  $h \in \wedge^n \mathbb{C}^n$ , then |h| is a number such that  $h = |h|\mathfrak{e}_1 \wedge \mathfrak{e}_2 \wedge \cdots \wedge \mathfrak{e}_n$ ;
- for  $h \in \wedge^m \mathbb{C}^n$  we set:  $||h|| := \sum_{\alpha \in \mathscr{A}_m} |h_\alpha|$ , where  $\{h_\alpha\}$  are the coefficients from the expansion  $h = \sum_{\alpha \in \mathscr{A}_m} h_\alpha \mathfrak{e}_\alpha$ .



# 2. Asymptotics of the Weyl-type solutions

Let  $\mathscr{S} \subset \mathbb{C} \setminus \Sigma$  be an open sector with vertex at the origin. For arbitrary  $\rho \in \mathscr{S}$ and  $k \in \{1, ..., n\}$  we define the k-th Weyl-type solution  $\Psi_k(x, \rho)$  as a solution of (1) normalized with the asymptotic conditions:

$$\Psi_k(x,\rho) = O(x^{\mu_k}), \quad x \to 0, \qquad \Psi_k(x,\rho) = \exp(\rho x R_k)(\mathfrak{f}_k + o(1)), \quad x \to \infty.$$
 (4)

If  $q(\cdot)$  is off-diagonal matrix function summable on the semi-axis  $(0,\infty)$ , then for arbitrary given  $\rho \in \mathscr{S}$  k-th Weyl-type solution exists and is unique provided that the characteristic function

$$\Delta_k(\rho) = |F_{k-1}(x,\rho) \wedge T_k(x,\rho)|$$

does not vanish at this  $\rho$ . Here  $\{F_k(x,\rho)\}_{k=1}^n$ ,  $\{T_k(x,\rho)\}_{k=1}^n$  are certain tensor-valued functions (fundamental tensors) defined as solutions of certain Volterra integral equations, see [12, 13] for details.

For arbitrary fixed arguments  $x, \rho$  (where  $\Delta_k(\rho) \neq 0$ ) the value  $\Psi_k = \Psi_k(x, \rho)$  is the unique solution of the following linear system:

$$F_{k-1} \wedge \Psi_k = F_k, \quad \Psi_k \wedge T_k = 0. \tag{5}$$

This fact and also some properties of the Weyl-type solutions were established in works [12, 14], in particular, the following asymtotics for  $\rho \to \infty$  was obtained:

$$\Psi_k(x,\rho) = \Psi_{0k}(x,\rho) + o\left(\exp(\rho x R_k)\right). \tag{6}$$

For our purposes we need more detailed asymptotics that can be obtained provided that the potential  $q(\cdot)$  is smooth enough and vanishes as  $x \to 0$ .

We denote by  $\mathscr{P}(\mathscr{S})$  the set of functions  $F(\rho)$ ,  $\rho \in \mathscr{S}$  admitting the representation:

$$F(\rho) = \sum_{\lambda \in \Lambda} f(\lambda) \exp(\lambda \rho).$$

Here the set  $\Lambda$  (depending on  $F(\cdot) \in \mathscr{P}(\mathscr{S})$ ) is such that  $\text{Re}(\lambda \rho) < 0$  for all  $\lambda \in \Lambda$ ,  $\rho \in \mathscr{S}$ . We note that the set of scalar functions belonging to  $\mathscr{P}(\mathscr{S})$  is an algebra with respect to pointwise multiplication.

**Theorem 1.** Suppose that  $q(\cdot)$  is an absolutely continuous off-diagonal matrix function such that q(0) = 0. Denote by  $\hat{q}_o(\cdot)$  the off-diagonal matrix function such that  $[B,\hat{q}_o(x)] = -q(x)$  for all x > 0 (here  $[\cdot,\cdot]$  denotes the matrix commutator). Define the diagonal matrix  $d(x) = diag(d_1(x), \dots, d_n(x))$ , where

$$d_k(x) := \int_{x}^{\infty} t^{-1} ([\hat{q}_o(t), A])_{kk} dt$$

and set  $\hat{q}(x) := \hat{q}_o(x) + d(x)$ .

Suppose that all the functions  $q_{ij}(\cdot), q'_{ij}(\cdot)$  and  $\tilde{q}_{ij}(\cdot)$ , where  $\tilde{q}(x) := \hat{q}'(x) + x^{-1}[\hat{q}(x), A]$ , belong to  $X_p := L_1(0, \infty) \cap L_p(0, \infty)$ , p > 2. Then for each fixed x > 0 and  $\rho \to \infty$ ,  $\rho \in \overline{\mathscr{S}}$  the following asymptotics holds:

$$\rho(\Psi(q, x, \rho) - \Psi_0(x, \rho)) \exp(-\rho x R) = \mathfrak{f}\Gamma(x) + \hat{q}(x)\mathfrak{f} + \mathscr{E}(x, \rho) + o(1),$$

where  $\Gamma(x)$  is some diagonal matrix,  $\mathscr{E}(x,\cdot) \in \mathscr{P}(\mathscr{S})$ .



Proof. Denote

$$\tilde{F}_k(x,\rho) := \exp\left(-\rho x \overrightarrow{R}_k\right) F_k(x,\rho), \quad \tilde{T}_k(x,\rho) := \exp\left(-\rho x \overleftarrow{R}_k\right) T_k(x,\rho).$$

By virtue of [13, Theorem 1] the following asymptotics hold

$$\rho \tilde{F}_{k}(q, x, \rho) = \rho \tilde{F}_{0k}(x, \rho) + \sum_{\alpha \in \mathscr{A}_{k}} f_{k,\alpha}(x) \mathfrak{f}_{\alpha} + \mathscr{E}(x, \rho) + o(1),$$

$$\rho \tilde{T}_{k}(q, x, \rho) = \rho \tilde{T}_{0k}(x, \rho) + d_{0k} \tilde{T}_{0k}(x, \rho) +$$

$$+ \sum_{\alpha \in \mathscr{A}_{n-k+1}} T_{k,\alpha^{*}(k)}^{0} g_{k,\alpha,\alpha^{*}(k)}(x) \mathfrak{f}_{\alpha} + \mathscr{E}(x, \rho) + o(1),$$

$$(7)$$

where  $\alpha^*(k) := (k, \ldots, n)$ ,  $\alpha_*(k) := (1, \ldots, k)$ ;  $f_{k,\alpha}(x)$ ,  $g_{k,\alpha,\alpha^*(k)}(x)$  are some scalars that can be written explicitly in terms of  $q(\cdot)$ .

For the Weyl-type solutions of the unperturbed system we have the asymptotics (following directly from their definition)

$$\tilde{\Psi}_{0k}(x,\rho) = \mathfrak{f}_k + \mathscr{E}(x,\rho) + O\left(\rho^{-1}\right),\tag{8}$$

where  $\tilde{\Psi}_{0k}(x,\rho) := \exp(-\rho x R_k) \Psi_{0k}(x,\rho)$ . Here and below we use the same symbol  $\mathscr{E}(\cdot,\cdot)$  for different functions such that  $\mathscr{E}(x,\cdot) \in \mathscr{P}(\mathscr{S})$  for each fixed x.

We rewrite relations (5) in the form of the following linear system with respect to value  $\tilde{\Psi}_k = \tilde{\Psi}_k(x,\rho)$  of the function  $\tilde{\Psi}_k(x,\rho) := \exp(-\rho x R_k) \Psi_k(x,\rho)$ :

$$\tilde{F}_{k-1} \wedge \tilde{\Psi}_k = \tilde{F}_k, \quad \tilde{\Psi}_k \wedge \tilde{T}_k = 0.$$

By making the substitution

$$\tilde{\Psi}_k = \tilde{\Psi}_{0k} + \hat{\Psi}_k,\tag{9}$$

we obtain

$$\tilde{F}_{k-1} \wedge \hat{\Psi}_k = \tilde{F}_k - \tilde{F}_{k-1} \wedge \tilde{\Psi}_{0k}, \quad \hat{\Psi}_k \wedge \tilde{T}_k = -\tilde{\Psi}_{0k} \wedge \tilde{T}_k$$

The obtained relations we transform into the following system of linear algebraic equations

$$\sum_{j=1}^{n} m_{ij} \gamma_{jk} = u_i, \qquad i = \overline{1, n}$$
 (10)

with respect to coefficients  $\{\gamma_{jk}\}$  of the expansion

$$\hat{\Psi}_k(x,\rho) = \sum_{j=1}^n \gamma_{jk}(x,\rho) \mathfrak{f}_j. \tag{11}$$

Coefficients  $\{m_{ij}\}$ ,  $\{u_i\}$  can be calculated as follows:

$$m_{ij} = \left| \tilde{F}_{k-1} \wedge \mathfrak{f}_{j} \wedge \mathfrak{f}_{\alpha} \right|,$$

$$u_{i} = \left| (\tilde{F}_{k} - \tilde{F}_{k-1} \wedge \tilde{\Psi}_{0k}) \wedge \mathfrak{f}_{\alpha} \right|, \quad \alpha = \alpha^{*}(k) \setminus i, \quad i = \overline{k, n},$$

$$m_{ij} = \left| \mathfrak{f}_{\alpha} \wedge \mathfrak{f}_{j} \wedge \tilde{T}_{k} \right|, \quad u_{i} = -\left| \mathfrak{f}_{\alpha} \wedge \tilde{\Psi}_{0k} \wedge \tilde{T}_{k} \right|, \quad \alpha = \alpha_{*}(k-1) \setminus i, \quad i = \overline{1, k-1}.$$



Using (7), (8) and taking into account that

$$\tilde{F}_{k-1}^0 \wedge \tilde{\Psi}_{0k} = \tilde{F}_k^0, \quad \tilde{\Psi}_{0k} \wedge \tilde{T}_k^0 = 0,$$

we obtain the following asymptotics for the coefficients of SLAE (10) as  $\rho \to \infty$ 

$$m_{ij}(x,\rho) = O\left(\rho^{-1}\right), \ j \neq i, \ m_{ii}(x,\rho) = m_{ii}^0 + O\left(\rho^{-1}\right), \ m_{ii}^0 = (-1)^{k-i}|\mathfrak{f}|, \ i = \overline{k,n}, \ (12)$$

and

$$\begin{split} m_{ij}(x,\rho) &= m_{ij}^0 + O\left(\rho^{-1}\right), \quad i = \overline{1,k-1}, \quad j = \overline{1,k-1}, \\ m_{ij}(x,\rho) &= m_{ij}^0 + \mathcal{E}(x,\rho) + O\left(\rho^{-1}\right), \quad i = \overline{1,k-1}, \quad j = \overline{k,n}, \end{split}$$

where

$$m_{ij}^0 = T_{k,\alpha^*(k)}^0 |\mathfrak{f}_{\alpha} \wedge \mathfrak{f}_j \wedge \mathfrak{f}_{\alpha^*(k)}|, \quad \alpha = \alpha_*(k-1) \setminus i,$$

and therefore

$$m_{ij}(x,\rho) = O\left(\rho^{-1}\right), \ j \neq i, \ j < k, \qquad m_{ij}(x,\rho) = \mathscr{E}(x,\rho) + O\left(\rho^{-1}\right), \ j = \overline{k,n},$$
 (13)

$$m_{ii}(x,\rho) = m_{ii}^0 + O\left(\rho^{-1}\right), \quad m_{ii}^0 = (-1)^{k-1-i} |\mathfrak{f}| T_{k,\alpha^*(k)}^0$$
 (14)

for  $i = \overline{1, k-1}$ .

Proceeding in a similar way we obtain

$$\rho u_i(x,\rho) = u_i^1(x) + \mathcal{E}(x,\rho) + o(1), \tag{15}$$

$$u_i^1(x) = (-1)^{k-i} |\mathfrak{f}| f_{k,\alpha}(x) - \delta_{i,k} |\mathfrak{f}| f_{(k-1),\alpha_*(k-1)}(x), \ \alpha = \alpha_*(k-1) \cup \{i\}, \ i = \overline{k,n}, \quad (16)$$

where  $\delta_{i,k}$  is a Kroeneker delta,

$$u_i^1(x) = -(-1)^{k-i} |\mathfrak{f}| T_{k,\alpha^*(k)}^0 g_{k,\beta,\alpha^*(k)}(x), \ \beta = \alpha' \setminus k, \ \alpha = \alpha_*(k-1) \setminus i, \ i = \overline{1,k-1}.$$
 (17)

Using the obtained asymptotics we obtain from (10) the auxiliary estimate  $\gamma_{ik}(x,\rho) = O\left(\rho^{-1}\right)$ .

Then, using in (10) the substitution  $\gamma_{ik}(x,\rho) = \rho^{-1}\hat{\gamma}_{ik}(x,\rho)$  (where, as it was shown above,  $\hat{\gamma}_{ik}(x,\rho) = O(1)$ ) we obtain for  $i = \overline{k}, n$ 

$$m_{ii}(x,\rho)\hat{\gamma}_{ik}(x,\rho) = u_i^1(x) + \mathcal{E}(x,\rho) - \sum_{j\neq i} m_{ij}(x,\rho)\hat{\gamma}_{jk}(x,\rho) + o(1).$$

In view of (12), (15) this yields

$$\hat{\gamma}_{ik}(x,\rho) = \gamma_{ik}^{1}(x) + \mathcal{E}(x,\rho) + o(1), \quad \gamma_{ik}^{1} = \frac{u_{i}^{1}(x)}{m_{ii}^{0}}, \tag{18}$$

 $i = \overline{k, n}$ .

Similarly, for i < k we have

$$m_{ii}(x,\rho)\hat{\gamma}_{ik}(x,\rho) = u_i^1(x) + \mathcal{E}(x,\rho) - \sum_{i > k} m_{ij}(x,\rho)\hat{\gamma}_{jk}(x,\rho) - \sum_{i < k, i \neq i} m_{ij}(x,\rho)\hat{\gamma}_{jk}(x,\rho) + o(1).$$

Using (13), (14) the obtained relation can be transformed as follows:

$$m_{ii}^{0}\hat{\gamma}_{ik}(x,\rho) = u_{i}^{1}(x) + \mathcal{E}(x,\rho) - \sum_{i \ge k} m_{ij}(x,\rho)\hat{\gamma}_{jk}(x,\rho) + o(1).$$



Now, using in the right hand side of the obtained formula (13), (14) for  $m_{ij}(x,\rho)$  and (18) for  $\hat{\gamma}_{jk}(x,\rho)$  with  $j=\overline{k,n}$  we conclude that formulas (18) are true for i< k as well.

In our further calculations we use particular form of the coefficients  $f_{k,\alpha}(x)$  and  $g_{k,\alpha,\beta}(x)$  given by [13, Theorem 1].

For  $i = \overline{k, n}$  from (18), (16), (12) we get

$$\gamma_{ik}^1(x) = \delta_{i,k} \tilde{\gamma}_{ik}^1(x) + f_{k,\alpha}(x), \quad \alpha = \alpha_*(k-1) \cup i. \tag{19}$$

Theorem 1 [13] yields

$$f_{k,\alpha}(x) = \chi_{\alpha} \left| \left( \hat{q}^{(k)}(x) \mathfrak{f}_{\alpha_*(k)} \right) \wedge \mathfrak{f}_{\alpha'} \right|, \quad \chi_{\alpha} := |\mathfrak{f}_{\alpha} \wedge \mathfrak{f}_{\alpha'}|.$$

Recall that any arbitrary linear operator V acting in  $\mathbb{C}^n$  can be expanded onto the wedge algebra  $\wedge \mathbb{C}^n$  so that the identity

$$V(h_1 \wedge \cdots \wedge h_m) = (Vh_1) \wedge \cdots \wedge (Vh_m)$$

remains true for any set of vectors  $h_1,\ldots,h_m,\ m\leqslant n$ ; moreover, for any  $h\in \wedge^n\mathbb{C}^n$  one has Vh=|V|h (here |V| denotes determinant of matrix of the operator V in the standard coordinate basis  $\{\mathfrak{e}_1,\ldots,\mathfrak{e}_n\}$ ). In what follows, the symbol  $\mathfrak{f}$  denotes the above mentioned expansion of the operator corresponding to the transmutation matrix  $\mathfrak{f}$ . We should note also that the relation  $(\mathfrak{f}^{-1}V\mathfrak{f})^{(k)}=\mathfrak{f}^{-1}V^{(k)}\mathfrak{f}$  is true for any  $n\times n$  matrix V. Taking this into account we obtain

$$f_{k,\alpha}(x) = \chi_{\alpha} \left| \left( \mathfrak{f} \left( \mathfrak{f}^{-1} \hat{q}^{(k)}(x) \mathfrak{f} \mathfrak{e}_{\alpha_{*}(k)} \right) \right) \wedge (\mathfrak{f} \mathfrak{e}_{\alpha'}) \right| =$$

$$= \left| \mathfrak{f}_{\alpha} \wedge \mathfrak{f}_{\alpha'} \right| \left| \left| \left( \mathfrak{f}^{-1} \hat{q}^{(k)}(x) \mathfrak{f} \mathfrak{e}_{\alpha_{*}(k)} \right) \wedge \mathfrak{e}_{\alpha'} \right| = \left| \mathfrak{e}_{\alpha} \wedge \mathfrak{e}_{\alpha'} \right| \left| \left( \left( \mathfrak{f}^{-1} \hat{q}(x) \mathfrak{f} \right)^{(k)} \mathfrak{e}_{\alpha_{*}(k)} \right) \wedge \mathfrak{e}_{\alpha'} \right|.$$

For the particular multi-index  $\alpha = \alpha_*(k-1) \cup i$  arising at (19) and arbitrary  $n \times n$  matrix V we have

$$|\mathfrak{e}_{\alpha} \wedge \mathfrak{e}_{\alpha'}| \left| \left( V^{(k)} \mathfrak{e}_{\alpha_*(k)} \right) \wedge \mathfrak{e}_{\alpha'} \right| = V_{ik}.$$

Substituting the obtained relations into (19) we arrive at

$$\gamma_{ik}^{1}(x) = \delta_{i,k}\tilde{\gamma}_{ik}^{1}(x) + \left(\mathfrak{f}^{-1}\hat{q}(x)\mathfrak{f}\right)_{ik}, \quad i = \overline{k,n}.$$

$$(20)$$

Proceeding in a similar way in the case i < k, using (13), (14), (17) we obtain:

$$\gamma_{ik}^{1}(x) = g_{k,\beta,\alpha^{*}(k)}(x), \quad \beta = \alpha' \setminus k, \alpha = \alpha_{*}(k-1) \setminus i.$$
(21)

Theorem 1 [13] yields

$$g_{k,\alpha,\beta}(x) = \chi_{\alpha} \left| \left( \hat{q}^{(n-k+1)}(x) \mathfrak{f}_{\beta} \right) \wedge \mathfrak{f}_{\alpha'} \right|$$

for  $\beta \neq \alpha$ . Repeating the arguments above we obtain

$$g_{k,\alpha,\beta}(x) = |\mathfrak{e}_{\alpha} \wedge \mathfrak{e}_{\alpha'}| \left| \left( \left( \mathfrak{f}^{-1} \hat{q}(x) \mathfrak{f} \right)^{(n-k+1)} \mathfrak{e}_{\beta} \right) \wedge \mathfrak{e}_{\alpha'} \right|.$$

In particular, one gets

$$g_{k,\beta,\alpha^*(k)} = |\mathfrak{e}_{\beta} \wedge \mathfrak{e}_{\beta'}| \left| \left( (\mathfrak{f}^{-1}\hat{q}(x)\mathfrak{f})^{(n-k+1)} \mathfrak{e}_{\alpha^*(k)} \right) \wedge \mathfrak{e}_{\beta'} \right|.$$



If  $\beta = \alpha' \setminus k$ ,  $\alpha = \alpha_*(k-1) \setminus i$ , i < k, then for arbitrary  $n \times n$  matrix V we have

$$|\mathfrak{e}_{\beta} \wedge \mathfrak{e}_{\beta'}| |(V^{(n-k+1)}\mathfrak{e}_{\alpha^*(k)}) \wedge \mathfrak{e}_{\beta'}| = V_{ik}.$$

Substituting the obtained relations into (21) we obtain

$$\gamma_{ik}^{1}(x) = \left(\mathfrak{f}^{-1}\hat{q}(x)\mathfrak{f}\right)_{ik}, \quad i = \overline{1, k - 1}. \tag{22}$$

From (22), (20), (18) we obtain

$$\rho \gamma_{ik}(x,\rho) = \hat{\gamma}_{ik}(x,\rho) = \delta_{i,k} \tilde{\gamma}_{ik}^{1}(x) + \left(\mathfrak{f}^{-1}\hat{q}(x)\mathfrak{f}\right)_{ik} + \mathscr{E}(x,\rho) + o(1).$$

In terms of the matrix  $\gamma = (\gamma_{ik})_{i,k=\overline{1,n}}$  this is equivalent to

$$\rho \gamma(x, \rho) = \Gamma(x) + \mathfrak{f}^{-1} \hat{q}(x) \mathfrak{f} + \mathscr{E}(x, \rho) + o(1),$$

where the matrix  $\Gamma(x)$  is diagonal. Finally, using (11) in the form  $\hat{\Psi}(x,\rho) = \mathfrak{f}\gamma(x,\rho)$  we obtain the required relation.

# 3. Reconstruction formula

Let  $\mathscr{S}_{\nu}$ ,  $\nu=\overline{1,N}$  be the open pairwise nonintersecting sectors such that  $\mathbb{C}\setminus\Sigma=\bigcup_{\nu=1}^N\mathscr{S}_{\nu}$ . Suppose that the sectors are enumerated in counterclockwise order.

We denote by  $\Sigma_{\nu}$  the open ray dividing  $\mathscr{S}_{\nu}$  and  $\mathscr{S}_{\nu+1}$  (assuming  $\mathscr{S}_{N+1}:=\mathscr{S}_1$ ). We agree that the rays  $\Sigma_{\nu}$  are oriented from 0 to  $\infty$ . Denote by  $\Sigma_{\nu}^+$  and  $\Sigma_{\nu}^-$  the edges of the cut (along  $\Sigma_{\nu}$ ) belonging to  $\mathscr{S}_{\nu+1}$  and  $\mathscr{S}_{\nu}$  respectively. We agree that  $\Sigma_{\nu}^+$  is oriented from 0 to  $\infty$  while  $\Sigma_{\nu}^-$  is oriented from  $\infty$  to 0.

For a function  $f(\rho)$ ,  $\rho \in \mathscr{S}_{\nu} \cup \mathscr{S}_{\nu+1}$  and arbitrary  $\rho_0 \in \Sigma_{\nu}$  we denote by  $f^{\pm}(\rho_0)$  the limit values (if they exist)

$$f^{-}(\rho_0) := \lim_{\rho \to \rho_0, \rho \in \mathscr{S}_{\nu}} f(\rho), \quad f^{+}(\rho_0) := \lim_{\rho \to \rho_0, \rho \in \mathscr{S}_{\nu+1}} f(\rho).$$

We say that off-diagonal matrix function  $q(\cdot) \in X_p$  belongs to the class  $G_0^p$  if for any  $\nu \in \{1, \ldots, N\}$  and  $k \in \{1, \ldots, n\}$  it is true that  $\Delta_k(\rho) \neq 0$  for all  $\rho \in \overline{\mathscr{F}}_{\nu}$ . If  $q(\cdot) \in G_0^p$  then the limit values  $\Psi_k^{\pm}(x, \rho_0)$  exist for any  $k \in \{1, \ldots, n\}$ ,  $\rho_0 \in \Sigma_{\nu}$ ,  $\nu \in \{1, \ldots, N\}$ .

We denote by  $\Psi(x,\rho)$  the matrix function  $\Psi(x,\rho)=(\Psi_1(x,\rho),\ldots,\Psi_n(x,\rho))$  and introduce the following *spectral mappings matrix* 

$$P(x, \rho) := \Psi(x, \rho)\Psi_0^{-1}(x, \rho).$$

If  $q(\cdot) \in G_0^p$  then the limit values  $P_k^{\pm}(x, \rho_0)$  exist for any  $k \in \{1, \ldots, n\}$ ,  $\rho_0 \in \Sigma_{\nu}$ ,  $\nu \in \{1, \ldots, N\}$ . We denote  $\hat{P}(x, \rho) := P^+(x, \rho) - P^-(x, \rho)$ . Following theorem contains the main result of the paper.

**Theorem 2.** Suppose that the potential  $q(\cdot) \in G_0^p$  satisfies the conditions of Theorem 1. Then the following relation (reconstruction formula) holds

$$q(x) = \frac{1}{2\pi i} \int_{\Sigma} \left[ B, \hat{P}(x, \rho) \right] d\rho,$$



where (as above) the brackets  $[\cdot,\cdot]$  denote the matrix commutator and the integral is considered as the following limit (existing for each x > 0)

$$\frac{1}{2\pi i} \int\limits_{\Sigma} \left[ B, \hat{P}(x, \rho) \right] d\rho := \lim_{r \to \infty} \frac{1}{2\pi i} \int\limits_{\Sigma_r} \left[ B, \hat{P}(x, \rho) \right] d\rho,$$

 $\Sigma^r := \Sigma \cap \{\rho : |\rho| \leqslant r\}.$ 

**Proof.** Consider the function

$$F(x,\rho) := \rho[B, P(x,\rho)] + q(x).$$

From Theorem 1 we have the asymptotics

$$\hat{\Psi}(x,\rho) := (\Psi(x,\rho) - \Psi_0(x,\rho)) \exp(-\rho x R) = \rho^{-1} (\mathfrak{f}\Gamma_{\nu}(x) + \hat{q}(x)\mathfrak{f} + \mathscr{E}_{\nu}(x,\rho) + o(1))$$

as  $\rho \to \infty$ ,  $\rho \in \mathscr{S}_{\nu}$ , where  $R = diag(R_1, \dots, R_n)$ ,  $\Gamma_{\nu}(x)$  are some diagonal matrices and  $\mathscr{E}_{\nu}(x, \cdot) \in \mathscr{P}(\mathscr{S}_{\nu})$ .

For  $\tilde{\Psi}_0(x,\rho)$  we have

$$\tilde{\Psi}_0(x,\rho) = \mathfrak{f} + \mathscr{E}_{\nu}(x,\rho) + o(1)$$

as  $\rho \to \infty$ ,  $\rho \in \mathscr{S}_{\nu}$  (we use the same symbol for denoting possibly different functions from  $\mathscr{P}(\mathscr{S}_{\nu})$ ).

Since  $|\det \tilde{\Psi}_0| = 1$  the following asymptotics is also valid

$$\tilde{\Psi}_0^{-1}(x,\rho) = \mathfrak{f}^{-1} + \mathscr{E}_{\nu}(x,\rho) + o(1), \quad \rho \to \infty, \quad \rho \in \mathscr{S}_{\nu}.$$

Therefore, for  $\rho \to \infty$ ,  $\rho \in \mathscr{S}_{\nu}$  we have

$$P(x,\rho) = I + \hat{\Psi}(x,\rho)\tilde{\Psi}_0^{-1}(x,\rho) = I + \rho^{-1}(\mathfrak{f}\Gamma_{\nu}(x)\mathfrak{f}^{-1} + \hat{q}(x) + \mathscr{E}_{\nu}(x,\rho) + o(1)). \tag{23}$$

Since the matrices  $\Gamma_{\nu}(x)$  are diagonal the matrices  $\mathfrak{f}\Gamma_{\nu}(x)\mathfrak{f}^{-1}$  are diagonal as well and we have  $[B,\mathfrak{f}\Gamma_{\nu}(x)\mathfrak{f}^{-1}]=0$ . Thus, from (23) we deduce

$$F(x,\rho) = \mathscr{E}_{\nu}(x,\rho) + o(1), \qquad \rho \to \infty, \quad \rho \in \mathscr{S}_{\nu}.$$
 (24)

Define

$$\gamma = \bigcup_{\nu=1}^{N} \left( \Sigma_{\nu}^{-} \cup \Sigma_{\nu}^{+} \right), \quad \gamma_{r} := \gamma \cap \{ \rho : |\rho| \leqslant r \}, \quad \Gamma_{r} := \gamma_{r} \cup C_{r},$$

where  $C_r$  is the circle  $\{\rho : |\rho| = r\}$  with a counterclockwise orientation.

By virtue of the Jordan lemma from asymptotics (24) it follows that for any arbitrary fixed  $\rho \in \mathbb{C} \setminus \Sigma$  we have

$$\lim_{r \to \infty} \int_{C_r} \frac{d\zeta}{\zeta - \rho} F(x, \zeta) = 0.$$

Therefore, the Cauchy integral formula for the closed contour  $\Gamma_r$  (where  $r > |\rho|$ )

$$F(x,\rho) = \frac{1}{2\pi i} \int_{\Gamma_x} \frac{d\zeta}{\zeta - \rho} F(x,\zeta)$$



can be transformed as follows:

$$F(x,\rho) = \lim_{r \to \infty} \frac{1}{2\pi i} \int_{\Sigma_r} \frac{d\zeta}{\zeta - \rho} (F^+(x,\zeta) - F^-(x,\zeta)).$$

Taking into account that  $F^+(x,\zeta) - F^-(x,\zeta) = \zeta[B,\hat{P}(x,\zeta)]$  we obtain

$$F(x,\rho) = \lim_{r \to \infty} \frac{1}{2\pi i} \int_{\Sigma_r} \frac{d\zeta}{\zeta - \rho} \zeta[B, \hat{P}(x,\zeta)].$$
 (25)

Moreover, we can proceed in a similar way applying the Cauchy formula to the function  $P(x, \rho) - I$ . Thus we obtain

$$P(x,\rho) - I = \frac{1}{2\pi i} \int_{\Gamma_r} \frac{d\zeta}{\zeta - \rho} (P(x,\zeta) - I)$$

and since from (24) it follows that

$$\lim_{r \to \infty} \int_{C_r} \frac{d\zeta}{\zeta - \rho} (P(x, \zeta) - I) = 0$$

we get the following representation:

$$P(x,\rho) = I + \lim_{r \to \infty} \frac{1}{2\pi i} \int_{\Sigma_r} \frac{d\zeta}{\zeta - \rho} (P^+(x,\zeta) - P^-(x,\zeta)).$$

Substituting this to the definition of the function  $F(x, \rho)$ , we get the following representation:

$$F(x,\rho) = q(x) + \lim_{r \to \infty} \frac{1}{2\pi i} \int_{\Sigma_r} \frac{d\zeta}{\zeta - \rho} \rho[B, \hat{P}(x,\zeta)].$$

Comparing it with (25) we obtain the desired relation.

### References

- 1. Brunnhuber R., Kostenko A., Teschl G. Singular Weyl-Titchmarsh-Kodaira theory for one-dimensional Dirac operators. *Monatshefte für Mathematik*, 2014, vol. 174, pp. 515–547. https://doi.org/10.1007/s00605-013-0563-5
- 2. Albeverio S., Hryniv R., Mykytyuk Ya. Reconstruction of radial Dirac operators. *Journal of Mathematical Physics*. 2007, vol. 48, 043501, 14 p.
- 3. Albeverio S., Hryniv R., Mykytyuk Ya. Reconstruction of radial Dirac and Schrödinger operators from two spectra. *Journal of Mathematical Analysis and Applications*, 2008, vol. 339, iss. 1, pp. 45–57. https://doi.org/10.1016/j.jmaa.2007.06.034
- 4. Serier F. Inverse spectral problem for singular Ablowitz Kaup Newell Segur operators on [0; 1]. *Inverse Problems*, 2006, vol. 22, no. 4, pp. 1457–1484. https://doi.org/10.1088/0266-5611/22/4/018
- 5. Gorbunov O. B., Shieh C.-T., Yurko V. A., Dirac system with a singularity in an interior point. *Applicable Analysis*, 2016, vol. 95, iss. 11, pp. 2397–2414. https://doi.org/10.1080/00036811.2015.1091069
- 6. Beals R., Coifman R. R. Scattering and inverse scattering for first order systems. *Communications on Pure and Applied Mathematics*, 1984, vol. 37, iss. 1, pp. 39–90. https://doi.org/10.1002/cpa.3160370105



- 7. Zhou X. Direct and inverse scattering transforms with arbitrary spectral singularities. *Communications on Pure and Applied Mathematics*, 1989, vol. 42, iss. 7, pp. 895–938. https://doi.org/10.1002/cpa.3160420702
- 8. Yurko V. A. Inverse spectral problems for differential systems on a finite interval. *Results in Mathematics*, 2006, vol. 48, no. 3–4, pp. 371–386. https://doi.org/10.1007/BF03323374
- 9. Yurko V. A. On higher-order differential operators with a singular point. *Inverse Problems*, 1993, vol. 9, no. 4, pp. 495–502. https://doi.org/10.1088/0266-5611/9/4/004
- 10. Yurko V. A. *Method of Spectral Mappings in the Inverse Problem Theory*. (Inverse and Ill-Posed Problems Series, vol. 31). Utrecht, VSP, 2002. 303 p. https://doi.org/10.1515/9783110940961
- 11. Sibuya Y. Stokes phenomena. *Bulletin of the American Mathematical Society*, 1977, vol. 83, no. 5, pp. 1075–1077. https://doi.org/10.1090/S0002-9904-1977-14391-7
- 12. Ignatyev M. Spectral analysis for differential systems with a singularity. *Results in Mathematics*, 2017, vol. 71, iss. 3–4, pp. 1531–1555. https://doi.org/10.1007/s00025-016-0605-0
- 13. Ignatiev M. Yu. Asymptotics of solutions of some integral equations connected with differential systems with a singularity. *Izvestiya of Saratov University*. *Mathematics*. *Mechanics*. *Informatics*, 2020, vol. 20, iss. 1, pp. 17–28. https://doi.org/10.18500/1816-9791-2020-20-1-17-28
- 14. Ignatiev M. Yu. On Weyl-type solutions of differential systems with a singularity. The case of discontinuous potential. *Mathematical Notes*, 2020, vol. 108, no. 6, pp. 814–826. https://doi.org/10.1134/S0001434620110243

Поступила в редакцию / Received 20.12.2020 Принята к публикации / Accepted 22.01.2021 Опубликована / Published 31.08.2021