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AnHoramusa. B pabore n3ydaioTcsi HEKOTOpble AaCTMeKTbl TEOPUH PACCESHUS [Js CHHTYJISIPHBIX
cucTeM nUpdepeHIManbHbIX ypaBHenui ¥ — x 1Ay — q(x)y = pBy, ¥ > 0 co creKTpaJbHBIM
napamerpoum p, rae A, B, q(x),z € (0,00) — n X n MaTpPULBl, MpUUeM MaTpHLbl A, B MOCTOSHHBIL.
B nanHoil paGoTe MBI paccMaTpuUBaeM Ba)KHBIH UACTHBIE c/aydail, Koraa marpuua-¢pyHKuus q(-)
sBasietcs: raakoi u ¢(0) = 0. B atom ciyuae nssi g(-) mosyueHo BbIpaxkKeHHe B BHE KOHTYPHOTO
MHTErpaJa, rie sapo 3anucbiBaeTcsl B TEPMUHAX pellleHuH Tuna Bedss paccmMaTprBaeMol CHCTEMBI.
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Introduction

Our studies concern some aspects of scattering theory of the differential systems

y —2 Ay — q(z)y = pBy, x>0 (1)

with n x n matrices A, B, q(z),z € (0,00), where A, B are constant and p is a spectral
parameter.

Differential equations with coefficients having non-integrable singularities at the end
or inside the interval often appear in various areas of natural sciences and engineering.
For n = 2, there exists an extensive literature devoted to different aspects of spectral
theory of the radial Dirac operators, see, for instance [1-5].
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Systems of the form (1) with n > 2 and arbitrary complex eigenvalues of the matrix
B appear to be considerably more difficult for investigation even in the “regular” case
of A =0 [6]. Some difficulties of principal matter also appear due to the presence of the
singularity. Whereas the “regular” case of A = 0 has been studied fairly completely to
date [6-8], for system (1) with A # 0 there are no similar general results.

In this paper, we consider the important special case when ¢(-) is smooth and
q(0) = 0 and, provided also that the discrete spectrum is empty, derive a formula that
expresses such ¢(-) in the form of some special contour integral, where the kernel can
be written in terms of the Weyl-type solutions of system (1). Formulas of such a type
play an important role in constructive solution of inverse scattering problems: use of
such formulas, where the terms in their right-hand sides are previously found from the
so-called main equation (see, for instance, [9, 10]), provides a final step of the solution
procedure. In order to obtain the above-mentioned reconstruction formula we establish
first the asymptotical expansions for the Weyl-type solutions as p — oo with o(p™})
rate remainder estimate.

1. Preliminary remarks

Consider first the following unperturbed system
y — 7' Ay = pBy (2)
and its particular case corresponding to the value p =1 of the spectral parameter
y —a~'Ay = By, (3)

but to complex (in general) values of x.
Assumption 1. Matrix A is off-diagonal. The eigenvalues {y;}}_, of the matrix A
are distinct and such that p; — p ¢ Z for j # k, moreover, Rep; < Reps < --- < Repy,

Reuk 7é 0, k= 1,_71
Assumption 2. B = diag(by, . ..,b,), the entries by, ..., b, are nonzero distinct points

on a complex plane such that > b, = 0 and such that any three points are noncolinear.
j=1
Under Assumption 1 system (3) has the fundamental matrix c¢(z) = (c1(x), ..., cu(2)),
where
cp(z) = atvép(x),

detc(x) = 1 and all ¢é(-) are entire functions, ¢;(0) = by, by is an eigenvector of the
matrix A corresponding to the eigenvalue py. We define Cy(x, p) := cr(px), = € (0, 00),
p € C. We note that the matrix C(z,p) is a solution of unperturbed system (2) (with
respect to x for given spectral parameter p).

Let ¥ be the following union of lines through the origin in C:

= |J {z:Re(zb;) =Re(zb)}.
(k.j):j7k

By virtue of Assumption 2 for any z € C\ X there exists the ordering Ry,..., R,
of the numbers by,...,b, such that Re(R;z) < Re(Rsz)--+- < Re(R,z). Let . be a
sector {z = rexp(iy),r € (0,00),v € (11,72)} lying in C\ X. Then, according to [11],
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system (3) has the fundamental matrix e(x) = (ei(), ..., e,(z)) which is analytic in .7,
continuous in .# \ {0}, and admits the asymptotics

ep(z) = ™ (f + 27 (), me(z) =O0(1), z—o00, z€.7,

where (fi,...,f,) = f is a permutation matrix such that (Ry,..., R,) = (b1,...,b,)f. We
define E(z,p) := e(px).

Everywhere below we assume that the following additional condition is satisfied.

Condition 1. For all k¥ = 2, n the numbers
Aoy = det(er(x), ..., ex—1(x), cx(2), ..., cn(x))
are not equal to 0.

Under Condition 1 system (3) has the fundamental matrix vo(z) = (Yoi(z),...,
Yon(x)) which is analytic in ., continuous in . \ {0} and admits the asymptotics:

Yok (xt) = exp(xtRy)(fx + 0o(1)), t—o00, x€., Yop(xr)=0(z"), x—0.

We define Wy(z,p) := ¥o(pzr). As above, we note that the matrices E(z,p), Vo(z,p)
solve (2).

In the sequel we use the following notations:

o {ey}y_, is the standard basis in C";

e o, is the set of all ordered multi-indices o = (v, ..., ), a1 < @y < -+ < Qpp,
a; €{1,2,...,n};

e for a sequence {u;} of vectors and a multi-index a = (ay,...,a,,) we define

Ug = Ugy N NUq,,;
e for a numerical sequence {a;} and a multi-index a we define

.- o .
Ay ‘= E aj, a = | | Qj;
JjEa JjEa

e for a multi-index « the symbol o’ denotes the ordered multi-index that comple-

ments « to (1,2,...,n);
e for k =1,n we denote
k n k n
- Z — —k . ko
ap = Qj, ap = Qj, a .—HCL]', a .—H(Zj.
j=1 j=k j=1 j=k

n

We note that Assumptions 1,2 imply, in particular, >  up = > Ry = 0 and

k=1 k=1
therefore for any multi-index «a one has R, = —R, and po = —ftq.

e the symbol V(™ where V is an n x n matrix, denotes the operator acting in A™C"
so that for any vectors wy,...,u,, the following identity holds:

m
V(m)(U/l/\UQ/\"'/\Um):ZU/l/\UQ/\"'/\Uj_l/\VUj/\Uj+1/\"'/\Um;
j=1

e if h € A"C", then |h| is a number such that h = |hle; Aea A~ Aey;

e for h € A™C" we set: ||h|| := > |hal|, where {h,} are the coefficients from the
aE A,
expansion h = > hge,.
aEYm
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2. Asymptotics of the Weyl-type solutions

Let ¥ € C\ X be an open sector with vertex at the origin. For arbitrary p € .
and k € {1,...,n} we define the k-th Weyl-type solution V(x,p) as a solution of (1)
normalized with the asymptotic conditions:

Ui(x,p) =0 @), x—=0,  Wi(x,p) =exp(prRi)(fi +o0(1)), = o0 (4)

If ¢(-) is off-diagonal matrix function summable on the semi-axis (0,00), then for ar-
bitrary given p € . k-th Weyl-type solution exists and is unique provided that the
characteristic function

Ai(p) = [Fi-1(z, p) A Ti(z, p)|

does not vanish at this p. Here {Fj(x,p)};_,, {Tx(x,p)};_, are certain tensor-valued
functions (fundamental tensors) defined as solutions of certain Volterra integral equa-
tions, see [12,13] for details.

For arbitrary fixed arguments z, p (where Ag(p) # 0) the value Uy = Uy (x, p) is the
unique solution of the following linear system:

Fo i AU, =F,, U, AT, =0. (5)

This fact and also some properties of the Weyl-type solutions were established in works
[12, 14], in particular, the following asymtotics for p — oo was obtained:

Ui(z, p) = Yor(w, p) + o (exp(pzRy)) - (6)

For our purposes we need more detailed asymptotics that can be obtained provided that
the potential ¢(-) is smooth enough and vanishes as x — 0.
We denote by (%) the set of functions F(p), p € . admitting the representation:

F(p) =Y f(N) exp(Ap).

AEA

Here the set A (depending on F(-) € Z(¥)) is such that Re(A\p) < 0 for all A € A,
p € . We note that the set of scalar functions belonging to #(.%) is an algebra with
respect to pointwise multiplication.

Theorem 1. Suppose that q(-) is an absolutely continuous off-diagonal matrix
function such that q(0) = 0. Denote by q,(-) the off-diagonal matrix function such that
(B, {o(x)] = —q(x) for all x > 0 (here [-,-] denotes the matrix commutator). Define the
diagonal matrix d(z) = diag(d,(x),...,d,(x)), where

o0

() = / 1 ([Go(0), A, dt

T

and set 4(z) := §o(x) + d(x).

Suppose that all the functions qi(-),q;(-) and G;(-), where §(z) = ¢ (v) +
+ a7 Yq(z), A], belong to X, := L(0,00) N L,(0,00), p > 2.

Then for each fixed v >0 and p — oo, p € .7 the following asymptotics holds:

p(Y(q,z,p) — Wo(z,p)) exp(—pzR) = fI'(z) + ¢(x)f + &(x, p) + o(1),

where I'(x) is some diagonal matrix, &(x,-) € P (7).
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Proof. Denote

Fy(z, p) == exp (—pwﬁo Fi(x,p),  Ti(x,p) :=exp (—pxﬁk) Ty (. p)-

By virtue of [13, Theorem 1] the following asymptotics hold

pF(q, %, p) = pFor(2,0) + D fra(@)fa + &, p) + 0(1),

Q€
pTi(q,x, p) = pTok(w, p) + dowTow(, p)+ (7)
+ Z Tlg,a*(k)gk,a,oa*(k) (ZL‘)fa + ég(xv p) + 0(1)7

aednflwl»l

where o (k) == (k,...,n), a.(k) :== (1,...,k); foa(®), Gr.a,a-k)(z) are some scalars that
can be written explicitly in terms of ¢(-).

For the Weyl-type solutions of the unperturbed system we have the asymptotics
(following directly from their definition)

Vor(,p) = i+ E(x,p) + O (p7'), (8)

where Wy (, p) := exp(—pzRy,)Wor(z, p). Here and below we use the same symbol &, -)
for different functions such that &(z,-) € Z(¥) for each fixed z.
We rewrite relations (5) in the form of the following linear system with respect to
value Wy, = Wy (x, p) of the function Wy (z, p) := exp(—pzRy)Wi(z, p):

Fo i AU, =F,, U AT, =0.
By making the substitution ) ) X
Uy = Yo, + Vg, 9)

we obtain . A . 3 . X . ) )
Fra ANV, =Fy — Fpi ANV, W AT = —Wor AT

The obtained relations we transform into the following system of linear algebraic equa-
tions

Zmiﬂjk = U, i=1Tn (10)
j=1
with respect to coefficients {7;;} of the expansion
r.p) =Y vl p)f;. (11)
j=1

Coefficients {m;;}, {w;} can be calculated as follows:

mgj = ‘Fk—l N N o

Y

, a=ao"(k)\i, 1=kn
a=a(k—1)\i, i=1k—1.

u; = ‘(Fk — Fp g ATgp) Afa

mw:fa/\fj/\Tk‘; Ui:—faA‘ifokATk,
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Using (7), (8) and taking into account that

F,?il/\\ifo]f:ﬁ}?, \i[Ok/\TlS:O,
we obtain the following asymptotics for the coefficients of SLAE (10) as p — oo
mij(x,p) = O (p7'), J # 1, malz,p) = mg + 0 (p7'), mi = (=1)7|fl, i =k,n, (12)

and

mij(w,p) =m+0(p7'), i=Tk-1, j=1k-1,
mij(z,p) =m) +E(x,p)+ 0 (p71), i=Tk—1, j
where
m?j = Tlg,a*(k)ﬁa AT ANar], o=k —=1)\1,
and therefore

mij<m7p) :O(p_l)a .]7&@7 j<k7 mij(xap) :g(fl/’,p)—f—O(p_l), j:k7n7 (13)

mii(xv p) = m?z +0 (p_l) ) m?z = (_1)k_1_i|ﬂTlg,a*(k) (14)
fori=1k—1.
Proceeding in a similar way we obtain
pui(x, p) = ui () + &(x,p) + o(1), (15)

ui(z) = (D" |l fra(@) = Skl fr-1)ane-n (), @ = au(k —1)U{i}, i =kn, (16)
where 0, is a Kroeneker delta,
ui(x) = =(=D" " I T oy 9k gy (), B=0a'\k, a =a.(k—=1)\i, i=1k—1. (17)

Using the obtained asymptotics we obtain from (10) the auxiliary estimate

Yik(z,p) = O (p7").
Then, using in (10) the substitution v (z, p) = p~"Jir(x, p) (Where, as it was shown
above, Y;x(z, p) = O(1)) we obtain for i = k,n

mii(xa p)ﬁ/lk(xv p) = uzl(m) + éa(x7 P) - Zmij(xvp)ﬂ/jk(xv p) + 0<1)

J#i
In view of (12), (15) this yields
. up (x
Fin(, p) = vig(x) + E(x, p) +0(1), 73 = n,fo ), (18)

i=k,n.
Similarly, for i < k we have

ma(, p) (. p) = uf (2)+E (2, )= myj(x, p)ijn(x, p)— > my(x, p)Ain(z, p)+o(1).
ik j<hgti

Using (13), (14) the obtained relation can be transformed as follows:

miAu(x, p) = uj (@) + &, p) = Y my(x, p)izu(e, p) +o(1).

Jjzk
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Now, using in the right hand side of the obtained formula (13), (14) for m;(x, p) and
(18) for 4ji(x, p) with j = k,n we conclude that formulas (18) are true for i < k as
well.

In our further calculations we use particular form of the coefficients fy () and
Jk.a,p(x) given by [13, Theorem 1].

For i = k,n from (18), (16), (12) we get

k(@) = 0Tk (@) + fral®), a=a.(k—1)Ui. (19)
Theorem 1 [13] yields

fra(T) = Xa |((j(k) (Z')fa*(k)> A for

Recall that any arbitrary linear operator V' acting in C" can be expanded onto the
wedge algebra AC™ so that the identity

o Xa = ’fa /\fa’|~

V(b A Ah) = (Vi) A+ A (Vi)

remains true for any set of vectors hq,...,h,,, m < n; moreover, for any h € A"C"
one has Vh = |V]h (here |V| denotes determinant of matrix of the operator V' in the
standard coordinate basis {ej,...,¢,}). In what follows, the symbol § denotes the above
mentioned expansion of the operator corresponding to the transmutation matrix f. We
should note also that the relation (f7'V§)*) = =1V (*®)j is true for any n x n matrix V.
Taking this into account we obtain

fra(@) = xa |(F (F M (@)fea.m)) A (fear)
= [fa A Farllfl [ (F4" (2)Feaniey) A ear (G%ﬂ@ﬂw%MwQAew.

For the particular multi-index o = a,(k — 1) U arising at (19) and arbitrary n x n
matrix V' we have

= leq A o]

(v(k)ea*(kz)) Aeqr| = Vi

Substituting the obtained relations into (19) we arrive at

lea A eo|

Vi (@) = 0y () + (f71Q(x)f)ik» i=k,n. (20)
Proceeding in a similar way in the case ¢ < k, using (13), (14), (17) we obtain:
Vi) = Gk parmy (@), B=a \ka=a(k-1)\i (21)

Theorem 1 [13] yields
gk,a,ﬁ(x) = Xa ‘(q(n_k+1)($)fﬁ) A foz’

for 6 # a. Repeating the arguments above we obtain

(1R ™ es) e

gk,a,ﬁ<x> = |eoz A eo/|

In particular, one gets

Irpark) = |es A egl

((fild(x)f) () ea*(k)) A 65/‘ )
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If g=a"\k, a=a.k—1)\1, i<k, then for arbitrary n x n matrix V' we have

|€5 AN 25/| (V(n_k+1)€a*(k)) VAN 25/| = V;k

Substituting the obtained relations into (21) we obtain
V(@) = (Fa(@)f) . =1Lk 1L (22)

From (22), (20), (18) we obtain

pYie(x, p) = Yir(x, p) = Siwip (@) + (F1q(2)f),, + E(x, p) + 0(1).

In terms of the matrix v = (7it); p—15 this is equivalent to

py(x, p) = D(x) +§ 4(x)f + E(x, p) + o(1),

where the matrix I'(z) is diagonal. Finally, using (11) in the form U(z, p) = fy(z, p) we
obtain the required relation. O

3. Reconstruction formula
Let “,, v = 1,N be the open pairwise nonintersecting sectors such that
N
C\ X = U . Suppose that the sectors are enumerated in counterclockwise order.

v=1
We denote by ¥, the open ray dividing ., and ., (assuming Sy := ;). We agree
that the rays X, are oriented from 0 to oco. Denote by Xt and X the edges of the cut
(along X,) belonging to .#,,; and ., respectively. We agree that Xt is oriented from 0
to oo while X is oriented from oo to 0.
For a function f(p), p € .%, U.%,,1 and arbitrary p, € ¥, we denote by f*(p,) the
limit values (if they exist)

f(po) = lim f(p), fT(po):= Tlim  f(p).
pP—p0,PES Y P—P0,PES V41
We say that off-diagonal matrix function ¢(-) € X,, belongs to the class Gf if for any
ve{l,...,N}and k € {1,...,n} it is true that Ap(p) # 0 for all p € .7,. I q(-) € G}
then the limit values Wi (x, p) exist for any k € {1,...,n}, pp € %,, v € {1,...,N}.
We denote by WU(z,p) the matrix function U(z,p) = (Vy(z,p),...,V.(x,p)) and
introduce the following spectral mappings matrix

P(x,p) = V(z, p)¥y ' (x, p).

If ¢q(-) € G then the limit values P (z,po) exist for any k € {1,....,n}, pp € %,,
ve{l,...,N}. We denote P(z,p) := P*(x,p) — P~ (x,p). Following theorem contains
the main result of the paper.

Theorem 2. Suppose that the potential q(-) € Gb satisfies the conditions of Theo-
rem 1. Then the following relation (reconstruction formula) holds

o) = 5 [ [B P o

21
b
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where (as above) the brackets [-,-] denote the matrix commutator and the integral is
considered as the following limit (existing for each x > 0)

1

27 [B P(x p)] dp := lim L [B,p(x,p)] dp,

r—oo 271
by 3T

Y=YXn{p:|pl <r}

Proof. Consider the function

F(z,p) = p[B, P(z, p)] + q(z).

From Theorem 1 we have the asymptotics

(2, p) = (U(a. p) — Vo, p)) exp(—prR) = p~ (T, () + d()f + & (x, p) + o(1))

as p — oo, p € %, where R = diag(Ry,...,R,), I',(z) are some diagonal matrices and
é,(x,) € P(S).
For Wy(z, p) we have .
Uo(x,p) =f+ &, (x,p) + o(1)

as p — oo, p € ., (we use the same symbol for denoting possibly different functions
from 2(.7,)).
Since |det Uy| = 1 the following asymptotics is also valid

Ul (z,p) = + & (x,p) +0(1), p—o0, pES
Therefore, for p — o0, p € ., we have

P(x,p) =T+ W(z,p) V5" (z,p) = I+ p~ ' (FLu(2)F ' +G(x) + & (2, p) +0(1).  (23)

1

Since the matrices I',(z) are diagonal the matrices §I",(x)f~' are diagonal as well and

we have [B, T, (z)f~!] = 0. Thus, from (23) we deduce
F(x,p) = &,(x,p) +o(1),  p—=o0, peS (24)

Define

N
U (Z, 0%, we=yn{p:lpl<r}, T,:=7UC,

where C, is the circle {p : |p| = r} with a counterclockwise orientation.
By virtue of the Jordan lemma from asymptotics (24) it follows that for any arbitrary
fixed p € C\ X we have
d
lim —CF(QI, ¢) =0.
T—00 C —p

T

Therefore, the Cauchy integral formula for the closed contour I, (where r > |p|)

Fle,p) = —— [ -2 F(z,¢)
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can be transformed as follows:

Fa,p) = lim —— [ -5 (F*(a,¢) = F~(2,0)).

r—oo 211 ) (—p
E’I‘

Taking into account that F*(z,¢) — F~(x,¢) = ¢[B, P(x,¢)] we obtain

1 d A
Flap) = lim 5o [ (BP0 (25)
27‘

Moreover, we can proceed in a similar way applying the Cauchy formula to the function
P(z,p) — I. Thus we obtain

1 d
P(x,p)—]z% CTCP(P(QZO_I)
Iy

and since from (24) it follows that

TILIEOC/ CdTCp(P(x,C) —1)=0

we get the following representation:

Pl p) = I+ tim —— [~ (P (z,0) = P~(2,0)).

r—oo 21t ) (—p
Z’l‘

Substituting this to the definition of the function F(z,p), we get the following repre-
sentation:

.1 d¢ .
E’I’
Comparing it with (25) we obtain the desired relation. O
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