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Abstract. The paper is devoted to the multiple chordal Loewner differential equation with dif-

ferent driving functions on two time intervals. We obtain exact implicit or explicit solutions to

the Loewner equations with piecewise constant driving functions and with combined constant

and square root driving functions. In both cases, there is an analytical and geometrical descrip-

tion of generated traces. Earlier, Kager, Nienhuis and Kadanoff integrated the chordal Loewner

differential equation either with a constant driving function or with a square root driving func-

tion. In the first case, the equation generates a rectilinear slit in the upper half-plane which

is orthogonal to the real axis R. In the second case, a rectilinear slit forms an angle to R. In

our paper, the multiple chordal Loewner differential equation generates more complicated hulls

consisting of three rectilinear and curvilinear fragments which can be either intersecting or

disjoint. Analytical results of the paper are accompanied by geometrical illustrations.
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Аннотация. В статье рассматривается хордовое дифференциальное уравнение Лëвнера с

управлением, заданным разными функциями на частях отрезка интегрирования. Получены

точные решения в явном или неявном виде для кусочно-постоянной управляющей функ-

ции, а также управления, заданного как комбинация постоянной функции и квадратного

корня. Для обоих случаев дано аналитическое и геометрическое описания генерируемых

разрезов. Ранее Кагер, Ниенуис и Каданов проинтегрировали хордовое дифференциальное

уравнение Лëвнера с постоянной управляющей функцией и с управляющей функцией в виде

квадратного корня. В первом случае уравнение генерирует в верхней полуплоскости прямо-

линейный разрез, ортогональный к вещественной оси R. Во втором случае прямолинейный

разрез образует некоторый угол с осью R, зависящий от коэффициента при квадратном

корне. В настоящей статье обобщенное дифференциальное уравнение Лëвнера генерирует бо-

лее сложные множества, состоящие из трех прямолинейных или криволинейных фрагментов,

которые могут пересекаться или не иметь общих точек. Аналитические результаты статьи

сопровождаются геометрическими интерпретациями.

Ключевые слова: уравнение Лёвнера, управляющая функция, разрез, случай интегри-
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Introduction

The Loewner differential equations [1] play an important role in the geometric
function theory of complex analysis. We will discuss a half-plane version of the Loewner
equation, see e. g., [2, Chapter 4], generating self-maps of the upper half-plane H =
= {z ∈ C : Im z > 0}. Given a simple curve Γ in H, emanating from a point on R, and
for an appropriate continuous parametrization Γ(t) of Γ, 0 6 t 6 T , there exists a unique
conformal map g(·, t) from H\Γ[0, t] onto H that obeys the hydrodynamic normalization
near infinity

g(z, t) = z +
2t

z
+O

(

1

|z|2
)

, z →∞.

In this case, there is a continuous driving function λ : [0, T ]→ R such that g solves the
chordal Loewner differential equation

∂g(z, t)

∂t
=

2

g(z, t)− λ(t)
, g(z, 0) = z, 0 6 t 6 T, z ∈ H \ Γ[0, T ]. (1)

We say that g generates Γ.
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If Γ is a finite union of simple curves, probably with common points, we need to use
the multiple Loewner differential equation

∂g(z, t)

∂t
=

n
∑

k=1

2µk

g(z, t)− λk(t)
, g(z, 0) = z, 0 6 t 6 T, z ∈ H \ Γ[0, T ]

with (piecewise) continuous driving functions λk : [0, T ] → R and positive numbers µk,
k = 1, . . . , n,

∑

n

k=1
µk = 1.

In this paper, we restrict ourselves to n = 2 and µ1 = µ2 = 1

2
. So we consider the

Loewner differential equation

∂g(z, t)

∂t
=

2
∑

k=1

1

g(z, t)− λk(t)
, g(z, 0) = z, 0 6 t 6 T, z ∈ H \ Γ[0, T ]. (2)

There are only few known examples of driving functions in (1) or (2) that admit
explicit integration of this equation and describe corresponding traces Γ. In [3], the
authors solve equation (2) with constant driving functions λ1 < 0 and λ2 = −λ1. For
n = 1, the authors of [3] give a full description of a trace generated in equation (1) if
the driving function has the form λ(t) = A

√
t, A > 0.

We aim to develop integration possibilities for equation (2) with combined driving
functions λ1 and λ2, λ1 = −λ2, when

λ2(t) =

{

0, 0 6 t < t0,

A, t0 6 t 6 T,
(3)

or

λ2(t) =

{

0, 0 6 t < t0,

A
√
t− t0, t0 6 t 6 T

(4)

for arbitrary A > 0 and t0 > 0 and a certain T > t0.
Note that both driving functions λ1, λ2 in (4) are continuous on [0, T ] while driving

functions λ1, λ2 in (3) have jumps at t0.
In Section 1, we integrate Loewner equation (2) with piecewise constant driving

functions (3), see Theorem 1, and show that a solution g(·, t) maps H \Γ onto H, where
Γ is a union of a segment Γ0 on the upper imaginary half-axis and a pair of curves Γ1

and Γ2 which are symmetric with respect to the imaginary axis and emanate either from
points on R if A > 2

√
t0 or from points on Γ0 if A < 2

√
t0. If A = 2

√
t0, the boundary

symmetric curves Γ1 and Γ2 emanate from the origin under angles ±π

4
to the real axis

R. We give implicit representations of Γ1 and Γ2 and asymptotic expansions for Γ1 and
Γ2 near t = t0.

In Section 2, we integrate Loewner equation (2) with continuous driving functions
(4) which are constant on [0, t0) and square root functions on [t0, T ], see Theorem 2.
We show that a solution g(·, t) maps H \ Γ onto H, where Γ is a union of the segment
[0, i2

√
t0] and a pair of curves which are symmetric with respect to the imaginary axis

and emanate from the point i2
√
t0. We give explicit representations of boundary curves

and their asymptotic expansions near t = t0.
In Section 4, we discuss an interrelation between exact solutions for the standard

Loewner equation on two separate time intervals and its multiple version.
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1. Loewner equation with piecewise constant driving functions

Let us solve the multiple Loewner differential equation (2) with combined driving
functions (3) that are piecewise constant on [0, T ].

Theorem 1. There exists T > t0 for which the multiple Loewner differential equa-
tion (2) with combined driving functions (3) has a solution w = g(z, t) on [0, T ]. On
[0, t0], g(z, t) =

√
z2 + 4t, and on [t0, T ], w = g(z, t) satisfies the implicit equation

w2 − z2 − A2 log
w2

z2 + 4t0
= 4t, g(z, t0) =

√

z2 + 4t0, z ∈ H \ [0, i2
√
t0], (5)

where the continuous branches of logw and log z are real when w and z are positive.
The function g(z, T ) maps H \ Γ onto H according to the following three cases:

(i) If A > 2
√
t0, then Γ = ∪2

k=0
Γk, where Γ0 = [0, 2i

√
t0], Γ2[0, T ] is a curve which

emanates from
√
A2 − 4t0 and is orthogonal to R at this point, Γ1[0, T ] is symmetric

to Γ2[0, T ] with respect to the imaginary axis (Fig. 1);
(ii) If A < 2

√
t0, then Γ = ∪2

k=0
Γ∗

k
, where Γ∗

0 = Γ0, Γ∗

2[0, T ] is a curve which
emanates from i

√
4t0 − A2 and is orthogonal to the imaginary axis at this point,

Γ∗

1[0, T ] is symmetric to Γ∗

2[0, T ] with respect to the imaginary axis (Fig. 2);
(iii) If A = 2

√
t0, then Γ = ∪2

k=0
Γ∗∗

k
, where Γ∗∗

0 = Γ0, Γ∗∗

2 [0, T ] is a curve which
emanates from the origin under the angle π

4
to R, Γ∗∗

1 [0, T ] is symmetric to Γ∗∗

2 [0, T ]
with respect to the imaginary axis (Fig. 3).

-2 -1 0 1 2

0

1

2

3

Fig. 1. Γ for t0 = 1, T = 3, A = 2.5 (i)
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2

3

-1 0 1

0

1

2

3

Fig. 2. Γ for t0 = 1, T = 3, A = 1.5 (ii) Fig. 3. Γ for t0 = 1, T = 3, A = 2 (iii)

Proof. It is a well-known result on [0, t0] that g(z, t) =
√
z2 + 4t, z ∈ H, see,

e.g., [2, p. 95], [3]. Next, we have to solve the multiple Loewner equation

dw

dt
=

1

w + A
+

1

w − A
=

2w

w2 − A2
, w(z, t0) = g(z, t0), t0 6 t 6 T. (6)
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The function g(z, t0) maps H \ [0, i2√t0] onto H. Differential equation (6) with separated
variables w and z has a general solution in the form

w2 − 2A2 logw = 4t+ c

with an arbitrary constant c. The initial value allows us to determine c as

c = z2 − A2 log(z2 + 4t0).

So we find an implicit solution w = w(z, t) to the Cauchy problem (6) as it is presented
in (5).

Differential equation (6) generates two traces Γ1 and Γ2 that are symmetric with
respect to the imaginary axis and emanate from two points g(z, t0) = ±A on R. Let Γ2

correspond to g(z, t0) = A and let Γ2 be given by z = z(t). Then the line of singularities
z(t) satisfies the equation

w(z(t), t) = A, t > t0.

Together with (5) this leads to the equality

A2 − z2(t)− A2 log
A2

z2(t) + 4t0
= 4t, t > t0, g(z(t0), t0) = A. (7)

The equality g(z(t0), t0) = A is equivalent to z(t0) =
√
A2 − 4t0. A disposition of the

initial point of Γ2 depends on the sign of A2 − 4t0. Let us consider three possible cases.
Case (i): A > 2

√
t0. Then z(t0) > 0 and Γ2 emanates from the point on the positive

real half-axis.
Case (ii): 0 < A < 2

√
t0. Then z(t0) is pure imaginary and Γ2 emanates from the

point on (0, i2
√
t0).

Case (iii): A = 2
√
t0. Then z(t0) = 0 and Γ2 emanates from the origin.

Equality (7) is an implicit representation of Γ2. Find an asymptotic expansion of Γ2

near the initial point in all the three cases.
Differentiate (7) and obtain

(z2(t))′ =
4(z2(t) + 4t0)

A2 − 4t0 − z2(t)
, z2(t0) = A2 − 4t0, t > t0. (8)

This allows us to find an asymptotic expansion for z(t) near t0. In cases (i) and (ii)
it is reasonable to set

z(t) =
√

A2 − 4t0 + a
√
t− t0 + o(

√
t− t0), t→ t+0 .

Hence

(z2(t))′ =
a
√
A2 − 4t0√
t− t0

+ o

(

1√
t− t0

)

, t→ t+0 .

Substitute expansions for z(t) and (z2(t))′ in (8) and see that

a
√
A2 − 4t0√
t− t0

= − 2A2

a
√
A2 − 4t0

√
t− t0

+ o

(

1√
t− t0

)

, t→ t+0 ,

which gives that

a2 = − 2A2

A2 − 4t0
.
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In Case (i) A2 > 4t0:

z(t) =
√

A2 − 4t0 + i

√
2A√

A2 − 4t0

√
t− t0 + o(

√
t− t0), t→ t+0 .

So z(t) is orthogonal to R at z =
√
A2 − 4t0.

In Case (ii) A2 < 4t0:

z(t) = i
√

4t0 − A2 +

√
2A√

4t0 − A2

√
t− t0 + o(

√
t− t0), t→ t+0 .

So z(t) is orthogonal to the imaginary axis at z = i
√
4t0 − A2.

Case (iii) A2 = 4t0 requires another asymptotic behavior of the trace near the origin.
Formula (8) transforms to the following

(z4(t))′ = −8(z2(t) + 4t0), z(t0) = 0.

Let us present another reasonable asymptotic expansion for z(t),

z(t) = b 4
√
t− t0 + o( 4

√
t− t0), t→ t+0 .

We take into account both last formulas and obtain that b4 = −32t0. Thus

z(t) = ei
π

4 2 4
√
2t0

4
√
t− t0 + o( 4

√
t− t0), t→ t+0 .

So z(t) is tangential to the radial ray at the angle π

4
to R from the origin.

Similarly to (7), derive an implicit representation for z(t) in Case (iii). Integrate the
differential equation for (z4(t))′ to get the needed equation

z2 + 4 log
A2

z2 + 4t0
= A2 − 4t, z(t0) = 0.

The boundary curve Γ1 can be studied similarly. However, it is symmetric to Γ1 with
respect to the imaginary axis due to the symmetric disposition of points ±A and the
symmetric trace on the time segment [0, t0].

It remains to be observed what happens to the boundary [0, i2
√
t0] when t varies

along [t0, T ]. The implicit representation (5) implies that the two singular points w = 0
and z = i2

√
t0 appear simultaneously. As far as w = 0 is constant on [t0, T ] according

to (6), the corresponding z = i2
√
t0 also does not move for t on [t0, T ]. Inner points of

the segment [0, i2
√
t0] cannot leave the imaginary axis because of symmetric properties

of conformal mappings generated by symmetric driving functions (3). This means that
the segment [0, i2

√
t0] is a part of the boundary set Γ, and there are no additional parts

of Γ on the imaginary axis, which completes the proof of Theorem 1. �

2. Combined constant and square root driving functions

Now we will solve the multiple Loewner differential equation (2) with combined
driving functions (4) that are continuous on [0, T ].

Theorem 2. For every T > t0, the multiple Loewner differential equation (2)
with combined driving functions (4) has a solution w = g(z, t) on [0, T ]. On [0, t0],
g(z, t) =

√
z2 + 4t, and on [t0, T ], w = g(z, t) satisfies the implicit equation

(A2 + 4)(t− t0) = w2 − (z2 + 4t0)
A
2

4
+1w−

A
2

2 , w(z, t0) =
√

z2 + 4t0,
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where the branches of power functions are such that they are positive when z2 + 4t0
and w are positive. The function g(z, T ) maps H \ Γ onto H, Γ = ∪2

k=0
Γk, where Γ0

is the segment [0, i2
√
t0], Γ2 is a square root of a rectilinear segment under the angle

4π/(A2+4) to R from (−4t0), and Γ1 is symmetric to Γ2 with respect to the imaginary
axis (Fig. 4).

-3 -2 -1 0 1 2 3

0

1

2

3

Fig. 4. Γ for t0 = 1, T = 3, A = 3.0

Proof. As in Theorem 1, on [0, t0], the function g(z, t) =
√
z2 + 4t, z ∈ H, solves

the chordal Loewner differential equation (2) with vanishing driving functions. Next, we
have to solve the multiple Loewner equation

dw

dt
=

1

w + A
√
t− t0

+
1

w − A
√
t− t0

=
2w

w2 − A2(t− t0)
, t0 6 t 6 T (9)

with the initial condition w(z, t0) = g(z, t0). We keep in mind that g(z, t0) =
√
z2 + 4t0

maps H \ [0, 2i√t0] onto H.
Note that differential equation (9) is linear with respect to t. Its general solution is

given implicitly by

t− t0 =
w2

A2 + 4
+ cw−

A
2

2

with an arbitrary constant c. The initial value allows us to determine c from the equation

0 =
z2 + 4t0
A2 + 4

+ c(z2 + 4t0)
−

A
2

4

so that

c = −(z2 + 4t0)
A
2

4
+1

A2 + 4
.

So we find an implicit solution to the Cauchy problem (9) as

t− t0 =
w2

A2 + 4
− (z2 + 4t0)

A
2

4
+1

A2 + 4
w−

A
2

2 , (10)

which proves the first statement of Theorem 2 for a certain T > t0.
Differential equation (9) generates two traces Γ1 and Γ2 symmetric with respect

to the imaginary axis and emanating from the common point g(0, t0) = i2
√
t0 on the

imaginary axis. Let Γ2 be situated in the right half-plane for a certain T > t0 and let Γ2

be given by z(t). Then the line of singularities z(t) satisfies the equation

w(z(t), t) = A
√
t− t0, t > t0.
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Together with (10) this leads to the equality

t− t0 =
A2(t− t0)

A2 + 4
− (z2(t) + 4t0)

A
2

4
+1

A2 + 4
(A
√
t− t0)

−
A
2

2 , t > t0.

Transform this expression to the following

4(t− t0)
A
2

4
+1 = −(z2(t) + 4t0)

A
2

4
+1A−

A
2

2

and give the explicit formula for z(t):

z(t) =

[

e
i4π

A2+42
8

A2+4A
2A

2

A2+4 (t− t0)− 4t0

]
1

2

, t > t0.

It is worth noting that z(t) is the square root of a rectilinear segment under the
angle 4π/(A2 + 4) to R from (−4t0). The slope of the rectilinear segment is changing
from π to 0 when A is growing from 0 to infinity. Therefore, Γ2 emanates from i2

√
t0

and is tangential to the ray at the angle

π4

A2 + 4
− π

2
=

π(4− A2)

2(A2 + 4)

to R at this endpoint. The slope of Γ2 is changing from π/2 to (−π/2) when A is
growing from 0 to infinity.

The last reasoning explains that Γ2 stays in the right half-plane for all A and T > t0
and it is a simple curve.

The boundary curve Γ1 can be studied similarly. However, it is symmetric to Γ1 with
respect to the imaginary axis due to the symmetric properties of the driving functions
±A√t− t0 and the symmetric trace on the time segment [0, t0].

It is known that the Loewner differential equation generates simple traces up to
the moment t when either lines of singularities Γ meet the real axis R or Γ has self-
intersection, see, e.g., [4]. We showed that, under conditions of Theorem 2, the curve Γ2

stays in the right half-plane for all t and does not reach R. Similarly, the curve Γ1 stays
in the left half-plane and does not reach R. Both Γ2 and Γ1 do not meet Γ0 := [0, i2

√
t0].

Hence the Loewner generating process develops in time for all T > t0. This completes
the proof of Theorem 2. �

Conclusions

The proofs of Theorems 1 and 2 are based on the knowledge of integrability cases of
the Loewner differential equation for constant and square root driving functions both in
the standard and multiple versions. There are some more known driving functions that
admit explicit or implicit integration of the Loewner equation. Therefore, it is possible
to present new examples of combined driving functions in the Loewner equation with
several contact points which join different driving functions and lead to exact solutions.

Point out at such examples. Besides constant and square root driving functions,
Kager, Nienhuis and Kadanoff [3] considered linear driving functions and obtained exact
solutions of the Loewner equation. We have to add that their adaptation to the multiple
equation is not so successful in getting exact solutions.
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In [5], the authors found an implicit exact solution of the Loewner equation with the
exponential driving function A(et − 1). Moreover, this driving function is well-adapted
to express an exact solution for the multiple Loewner equation.

There is another approach in the exact solution problem when driving functions are
determined for given traces of the Loewner equation. We refer to [6], where the problem
was solved for the circular arc in H tangential to R at 0. This result was generalized
in [7] for powers of this arc and in [8] for tangential curves close to this arc. It was
proved in [6] that the tangential circular arc of radius 1 and centered at i is generated by
the driving function λ(t) = 3α(t) + 2

√

−α(t)π, where α = α(t) is an algebraic function
satisfying the equation

α(3α + 4
√
−απ) = −6t, t > 0.

A similar problem was solved by Wu in [9] for circular arcs in H which meet R

orthogonally.
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