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Abstract. The paper is devoted to the multiple chordal Loewner differential equation with dif-
ferent driving functions on two time intervals. We obtain exact implicit or explicit solutions to
the Loewner equations with piecewise constant driving functions and with combined constant
and square root driving functions. In both cases, there is an analytical and geometrical descrip-
tion of generated traces. Earlier, Kager, Nienhuis and Kadanoff integrated the chordal Loewner
differential equation either with a constant driving function or with a square root driving func-
tion. In the first case, the equation generates a rectilinear slit in the upper hali-plane which
is orthogonal to the real axis R. In the second case, a rectilinear slit forms an angle to R. In
our paper, the multiple chordal Loewner differential equation generates more complicated hulls
consisting of three rectilinear and curvilinear fragments which can be either intersecting or
disjoint. Analytical results of the paper are accompanied by geometrical illustrations.
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AnHoranusa. B cratee paccmarpuBaercsi xoproBoe nuddepeHHanbHoe ypaBHeHHe JIéBHepa ¢
yhpaBJieHHeM, 3aaHHbIM Pa3HbIMM (DYHKLUHSMH Ha 4acTAX OTpe3ka WHTerpuposanus. [losyueHsl
TOYHble pelleHHs] B SIBHOM WJH HeSBHOM BHIe MAJs KYyCOUHO-NOCTOSIHHOW yrpaBJjsiouled (yHK-
UM, a TakxKe yIpaBJeHHsl, 3aJaHHOr0 Kak KOMOMHALHs MOCTOSHHOHW (DYHKLUHUHW U KBaApaTHOTO
KopHsi. [l 0060oMX c/ydyaeB NAaHO aHAJIUTHYECKOE U reoMeTpPUUYEecKOe OINMHCAHUS TeHepUpYyeMbIX
paspesoB. Panee Karep, Huenyuc u Kaganos npouHTerprupoBanu xopnoBoe nuddepeHIHalbHOe
ypaBHeHHe JIEBHepa C MOCTOSHHOM yMpaBASOLIEd PYHKLUNEH U ¢ YIIpaBJsolled (PyHKIHEH B BUME
KBaJpaTHOro KOpHs. B mepBoM cjydae ypaBHeHHe reHepUpyeT B BepXHel IMOJIYMJIOCKOCTH MPSIMO-
JINHEHHBIA pa3pe3, OPTOTOHAJbHBIA K BellecTBeHHOH ocu R. Bo BTOpoMm ciydae mpsiMoJHHEHHBIH
paspe3 oOpasyeT HEKOTOPBIH yros ¢ ocbio R, 3aBUCALIME OT KO3(DHUIHMEHTA TNPH KBAAPATHOM
KopHe. B Hacrosiiie# cratbe 060011eHHOe U (epeHIIHanbHOe YpaBHeHHe JIEBHepa reHepupyet 60-
Jlee CJI0’KHble MHOXKECTBa, COCTOsILIIME U3 TPeX MPSMOJNHUHENHbIX UM KPUBOJIUHEHHBIX (PparMeHTOB,
KOTOpPble MOTYT IepeceKaTbCsi WM He HMeThb OOIIMX ToyeK. AHaJIuTHUECKHEe Pe3ysbTaThl CTaThbH
COINPOBOXKAAIOTCS FeOMEeTPUYECKUMH UHTepIpeTalUsiMU.
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Introduction

The Loewner differential equations [1] play an important role in the geometric
function theory of complex analysis. We will discuss a half-plane version of the Loewner
equation, see e.g., [2, Chapter 4], generating self-maps of the upper half-plane H =
={z € C:Imz > 0}. Given a simple curve I' in H, emanating from a point on R, and
for an appropriate continuous parametrization I'(¢) of I', 0 < ¢ < T, there exists a unique
conformal map g(-,t) from H\ I'[0, ] onto H that obeys the hydrodynamic normalization
near infinity

2t 1
g(z,t) =2+ —4+0|— |, z— o0
2o l)
In this case, there is a continuous driving function X : [0,7] — R such that g solves the
chordal Loewner differential equation
Jdg(z,1) 2

o gGnap TR OstsT s EA D Y

We say that g generates I'.
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[ T" is a finite union of simple curves, probably with common points, we need to use
the multiple Loewner differential equation

dg(z,t) < 24
e Ewo)

9(z,0) =2, 0<t<T, zeH\T[0,T]

with (piecewise) continuous driving functions Ay : [0,7] — R and positive numbers 1,
k=1,....n, >0 ;=1

In this paper, we restrict ourselves to n = 2 and p; = ps = % So we consider the
Loewner differential equation

Dg(2,t) 1 -
5 —;m, 950 =z 0<i<T, zeH\TO,T. (2

There are only few known examples of driving functions in (1) or (2) that admit
explicit integration of this equation and describe corresponding traces I'. In [3], the
authors solve equation (2) with constant driving functions A; < 0 and Ay = —\;. For
n = 1, the authors of [3] give a full description of a trace generated in equation (1) if
the driving function has the form A(¢) = Av/t, A > 0.

We aim to develop integration possibilities for equation (2) with combined driving
functions A\; and Ay, A\; = — X9, when

0, 0<Lt<ty,
Aa(t) = ; (3)
A7 t0<t<T7
or
0, 0<t <y,
Ao(t) = 4
2(t) {A\/t—to, to <t<T @

for arbitrary A > 0 and ¢, > 0 and a certain 7" > t.

Note that both driving functions Ay, Ay in (4) are continuous on [0, 7] while driving
functions A1, Ao in (3) have jumps at .

In Section 1, we integrate Loewner equation (2) with piecewise constant driving
functions (3), see Theorem 1, and show that a solution g(-,¢) maps H\ I" onto H, where
I' is a union of a segment I'y on the upper imaginary hali-axis and a pair of curves I'y
and I'y which are symmetric with respect to the imaginary axis and emanate either from
points on R if A > 2y/fy or from points on Ty if A < 2y/ty. If A = 2./ty, the boundary
symmetric curves I'; and I'; emanate from the origin under angles =% to the real axis
R. We give implicit representations of I'y and I'y and asymptotic expansions for I'; and
I'y near t = .

In Section 2, we integrate Loewner equation (2) with continuous driving functions
(4) which are constant on [0,%,) and square root functions on [ty, 7], see Theorem 2.
We show that a solution g¢(-,¢) maps H \ I onto H, where I" is a union of the segment
[0,124/%] and a pair of curves which are symmetric with respect to the imaginary axis
and emanate from the point i21/f,. We give explicit representations of boundary curves
and their asymptotic expansions near t = ;.

In Section 4, we discuss an interrelation between exact solutions for the standard
Loewner equation on two separate time intervals and its multiple version.
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1. Loewner equation with piecewise constant driving functions

Let us solve the multiple Loewner differential equation (2) with combined driving
functions (3) that are piecewise constant on [0, 7.

Theorem 1. There exists T > ty for which the multiple Loewner differential equa-
tion (2) with combined driving functions (3) has a solution w = g(z,t) on [0,T]. On
0,t0], g(z,t) = V22 +4t, and on [ty, T], w = g(z,t) satisfies the implicit equation

2

w? — 2% — A%log ,ZQ:UL—élt =4t, g(z,ty) = /22 +4ty, z€H\|0,i2v/t], (5)
0

where the continuous branches of logw and log z are real when w and z are positive.

The function g(z,T) maps H\ I" onto H according to the following three cases:

(i) If A > 2\/ty, then T' = U{_,I'y, where Ty = [0,2i\/To], T'2]0,T] is a curve which
emanates from \/A? — 4ty and is orthogonal to R at this point, I'1[0,T] is symmetric
to I';5[0, T with respect to the imaginary axis (Fig. 1);

(i) If A < 2y/ty, then T = U;_,I';, where T} = Ty, T5[0,T] is a curve which
emanates from iv/4ty — A% and is orthogonal to the imaginary axis at this point,
['1[0,T] is symmetric to I';[0,T] with respect to the imaginary axis (Fig. 2);

(iii) If A = 2\/ty, then T' = U;_,I';*, where T§* = Ty, I3*[0,T] is a curve which
emanates from the origin under the angle T to R, I't*[0,T] is symmetric to I';*[0,T]
with respect to the imaginary axis (Fig. 3).

i |

i /
A |

2 1 0 1 2

Fig. 1. T fortg=1,T=3, A=25 (i)

I I |
N

0

1 0 1 1 0 1

Fig. 2. T'fortg=1,T=3, A=1.5 (ii) Fig. 3. T'fortg=1,T =3, A=2 (iii)

Proof. It is a well-known result on [0,to] that g(z,t) = V224 4t, z € H, see,
e.g., [2, p. 95], [3]. Next, we have to solve the multiple Loewner equation

dw 1 1 2w

%—w%—A—i_w—A:wz—AQ’

w(z, to) = g(z,t9), to<t<T. (6)
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The function g(z,ty) maps H\ [0,i2+/%o] onto H. Differential equation (6) with separated
variables w and z has a general solution in the form

w? —2A%logw = 4t + ¢
with an arbitrary constant c¢. The initial value allows us to determine ¢ as
c= 22— A?log(2% + 4ty).

So we find an implicit solution w = w(z,t) to the Cauchy problem (6) as it is presented
in (5).

Differential equation (6) generates two traces I'; and I'; that are symmetric with
respect to the imaginary axis and emanate from two points g(z,ty) = +A on R. Let Ty
correspond to g(z,ty) = A and let I'y be given by z = z(¢). Then the line of singularities
z(t) satisfies the equation

w(z(t),t) = A, t=>t.

Together with (5) this leads to the equality

2

A2 22(f) — A’log —— —
zZ () OgZQ(t)+4t0

at, t=>to, g(z(to), o) = A (7)
The equality g(z(t9),t0) = A is equivalent to z(ty) = v/ A? — 4ty. A disposition of the
initial point of Iy depends on the sign of A? — 4t,. Let us consider three possible cases.

Case (i): A > 2./to. Then z(ty) > 0 and I'; emanates from the point on the positive
real half-axis.

Case (ii): 0 < A < 2y/fo. Then z(ty) is pure imaginary and I'y emanates from the
point on (0,42+/o).

Case (iii): A = 2\/t. Then z(ty) = 0 and 'y emanates from the origin.

Equality (7) is an implicit representation of I';. Find an asymptotic expansion of T's

near the initial point in all the three cases.
Differentiate (7) and obtain

2y A7) +4to)
(20) = A2 — 4ty — 22(t)

2(tg) = A2 —4tg, t > tg. (8)

This allows us to find an asymptotic expansion for z(¢) near ¢y. In cases (i) and (ii)
it is reasonable to set

2(t) = VA2 —dtg+ avt —to + o(VT —to), t— 1.

Hence

JAZ _
(z2(t))’:u+o ! , oty
N — N
Substitute expansions for z(¢) and (2%(¢))’ in (8) and see that
/ATty 242 +O< 1 ) .t
Vi—to  a/AZ—dig/T— 1, Vi—t, ) 0’

which gives that

) 242
a” = ———.
A2 — 4t
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In Case (i) A% > 4t,:

Va4 .
Z(t) = A2—4t0+lﬁ\/t_t0+o(\/t_t0), t-)to
So z(t) is orthogonal to R at z = \/A? — 4.
In Case (ii) A% < 4t:

| ViAo .
Z(t):l 4t0—A2+m t—t0+0( t—to), t—>t0

So z(t) is orthogonal to the imaginary axis at z = iy/4ty — A2.
Case (iii) A? = 4ty requires another asymptotic behavior of the trace near the origin.
Formula (8) transforms to the following

(2'(t)) = —8(2*(t) + 4tg), =z(to) = 0.
Let us present another reasonable asymptotic expansion for z(t),
2(t) = b/t —to +o(Vt —to), t—tF.
We take into account both last formulas and obtain that b* = —32¢,. Thus
2(t) = 220t — to + oVt —to), t—tg.

So z(t) is tangential to the radial ray at the angle § to R from the origin.
Similarly to (7), derive an implicit representation for z(¢) in Case (iii). Integrate the
differential equation for (2%(¢))" to get the needed equation

2

2* +4log A% — 4t 2(ty) = 0.

22 44ty

The boundary curve I'y can be studied similarly. However, it is symmetric to I'y with
respect to the imaginary axis due to the symmetric disposition of points A and the
symmetric trace on the time segment [0, Zy].

It remains to be observed what happens to the boundary [0,42+/%y] when ¢ varies
along [to,T]. The implicit representation (5) implies that the two singular points w =0
and z = i2+/ty appear simultaneously. As far as w = 0 is constant on [t,T] according
to (6), the corresponding z = i2+/ty also does not move for ¢ on [to,T]. Inner points of
the segment [0,i2+/o] cannot leave the imaginary axis because of symmetric properties
of conformal mappings generated by symmetric driving functions (3). This means that
the segment [0,i2+/%,] is a part of the boundary set T", and there are no additional parts
of I' on the imaginary axis, which completes the proof of Theorem 1. i

2. Combined constant and square root driving functions

Now we will solve the multiple Loewner differential equation (2) with combined
driving functions (4) that are continuous on [0, 7.

Theorem 2. For every T > to, the multiple Loewner differential equation (2)
with combined driving functions (4) has a solution w = g(z,t) on [0,T]. On [0,
g(z,t) =22+ 4t, and on [to, T], w = g(z,t) satisfies the implicit equation

(A% +4)(t —to) = w? — (2> + 4t0)AT+1w_AT, w(z,tg) = /2% + 4to,
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where the branches of power [unctions are such that they are positive when 2% + 4t
and w are positive. The function g(z,T) maps H\ T onto H, T = Ui_,T', where T,
is the segment [0,i2+/1o], T's is a square root of a rectilinear segment under the angle
47 /(A% +4) to R from (—4ty), and Ty is symmetric to Ty with respect to the imaginary
axis (Fig. 4).

-3 2 1 0 1 2 3

Fig. 4. T'fortg=1,T=3, A=3.0

Proof. As in Theorem 1, on [0,%], the function ¢(z,t) = V22 4+ 4t, z € H, solves
the chordal Loewner differential equation (2) with vanishing driving functions. Next, we
have to solve the multiple Loewner equation

dw_ 1 . 1 B 2w e
At~ wH+AVT—ty  w—AVT—t, w?—At—ty) O

with the initial condition w(z,ty) = g(z,%p). We keep in mind that g(z,tg) = V22 + 4t
maps H \ [0, 2iv/%o] onto H.

Note that differential equation (9) is linear with respect to ¢. Its general solution is
given implicitly by

t<T (9)

w? _A?
t — to = A2—+4 +cw 2
with an arbitrary constant c. The initial value allows us to determine ¢ from the equation
22 —|— 4t0

— 2
O_A2——|—4+C(Z +4t0)

_A?
4

so that ,
(22 + 4to) T+
A244
So we find an implicit solution to the Cauchy problem (9) as

2 2 A2
W +d) w*%z, (10)
A% +4 A% +4

t—t():

which proves the first statement of Theorem 2 for a certain 7" > .

Differential equation (9) generates two traces I'y and I'; symmetric with respect
to the imaginary axis and emanating from the common point ¢(0,ty) = 2/t on the
imaginary axis. Let I'y be situated in the right hali-plane for a certain 7" > ¢, and let I'y
be given by z(t). Then the line of singularities z(¢) satisfies the equation

w(z(t),t) = AVE—to, t >t
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Together with (10) this leads to the equality

At —to)  (22(t) + 4tg) .
t—1g = A2 14 — A2 14 (A\/t-to) 2t = 1.

Transform this expression to the following
A2 A2 A2
At —to) T = —(22(t) +4tg) s AT

and give the explicit formula for z(¢):

N

141 A2
Z(t) — €A24+42A28+4AAQ2+4 (t — to) — Aty , t =t

[t is worth noting that z(¢) is the square root of a rectilinear segment under the
angle 47 /(A? +4) to R from (—4t). The slope of the rectilinear segment is changing
from 7 to 0 when A is growing from 0 to infinity. Therefore, I'y emanates from i2+/%g
and is tangential to the ray at the angle

4 T w(4— A?)

A214 2 2(A2+14)

to R at this endpoint. The slope of T'y is changing from 7/2 to (—7n/2) when A is
growing from O to infinity.

The last reasoning explains that I'y stays in the right half-plane for all A and T" > ¢,
and it is a simple curve.

The boundary curve I'y can be studied similarly. However, it is symmetric to I'; with
respect to the imaginary axis due to the symmetric properties of the driving functions
+A\/t —ty and the symmetric trace on the time segment [0, .

[t is known that the Loewner differential equation generates simple traces up to
the moment ¢ when either lines of singularities I" meet the real axis R or I' has self-
intersection, see, e.g., [4]. We showed that, under conditions of Theorem 2, the curve I'y
stays in the right half-plane for all ¢ and does not reach R. Similarly, the curve I'; stays
in the left half-plane and does not reach R. Both I'; and I'; do not meet T’y := [0, i21/%0].
Hence the Loewner generating process develops in time for all 7" > t,. This completes
the proof of Theorem 2. O

Conclusions

The proofs of Theorems 1 and 2 are based on the knowledge of integrability cases of
the Loewner differential equation for constant and square root driving functions both in
the standard and multiple versions. There are some more known driving functions that
admit explicit or implicit integration of the Loewner equation. Therefore, it is possible
to present new examples of combined driving functions in the Loewner equation with
several contact points which join different driving functions and lead to exact solutions.

Point out at such examples. Besides constant and square root driving functions,
Kager, Nienhuis and Kadanoff [3] considered linear driving functions and obtained exact
solutions of the Loewner equation. We have to add that their adaptation to the multiple
equation is not so successful in getting exact solutions.
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In [5], the authors found an implicit exact solution of the Loewner equation with the
exponential driving function A(e’ — 1). Moreover, this driving function is well-adapted
to express an exact solution for the multiple Loewner equation.

There is another approach in the exact solution problem when driving functions are
determined for given traces of the Loewner equation. We refer to [6], where the problem
was solved for the circular arc in H tangential to R at 0. This result was generalized
in [7] for powers of this arc and in [8] for tangential curves close to this arc. It was
proved in [6] that the tangentlal mrcu ar arc of radius 1 and centered at i is generated by
the driving function A(¢) = 3a(t) + 2y/—a(t)m, where oo = «(t) is an algebraic function

satisfying the equation
a(3a+ 4y —am) = —6t, t>=0.

A similar problem was solved by Wu in [9] for circular arcs in H which meet R
orthogonally.
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