@Ms& Capar. yH-1a. Hos. cep. Cep.: Maremarvka. Mexanuka. iHgpopmarnka. 2022. T. 22, Bbin. 2

Hssectus Caparosckoro yHuBepcutera. HoBasi cepusi. Cepus: Marematuka. Mexanuka. WUngop-
matuka. 2022. T. 22, sum. 2. C. 196-204

lzvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 2,
pp- 196-204

https://mmi.sgu.ru https://doi.org/10.18500/1816-9791-2022-22-2-196-204

Article

Generalized model of nonlinear elastic foundation and longitudinal
waves in cylindrical shells

A. I. Zemlyanukhin, A. V. Bochkarev™, A. V. Ratushny, A. V. Chernenko

Yuri Gagarin State Technical University of Saratov, 77 Politechnicheskaya St., Saratov 410054, Russia

Aleksandr I. Zemlyanukhin, azemlyanukhin@mail.ru, https://orcid.org/000-0002-4379-8310, AuthorID:
13616

Andrey V. Bochkarev, ab2009sar@list.ru, https://orcid.org/000-0001-9088-9234, AuthorID: 10662
Aleksandr V. Ratushny, sania.ratushnyy@gmail.com, AuthorID: 1122561

Aleksandr V. Chernenko, 3chav@mail.ru, AuthorID: 819753

Abstract. A non-integrable quasi-hyperbolic sixth-order equation is derived that simulates
the axisymmetric propagation of longitudinal waves along the generatrix of a cylindrical
Kirchhoff — Love shell interacting with a nonlinear elastic medium. A six-parameter generalized
model of a nonlinear elastic medium, which is reduced in particular cases to the models of
Winkler, Pasternak, and Hetenyi, is introduced into consideration. The equation was derived
by the asymptotic multiscale expansions method under the assumption that the dimensionless
parameters of nonlinearity, dispersion, and thinness have the same order of smallness. The use
of the introduced model made it possible to reveal additional high-frequency and low-frequency
dispersions characterizing the response of the external environment to bending and shear. It is
shown that non-classical shell theories should be used to reveal nonlinear effects that compensate
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dispersion due to the inertia of normal displacement is compensated by the dispersion generated
by the reaction of the nonlinear elastic foundation to shear.
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AnHHoTanus. BriBeleHO HeHHTerpupyemMoe KBa3UTHUIepOOIMYeCcKOe ypaBHEHHE ILIeCTOr0 MOPsiKa,
MOJeJIUpYIolllee 0CECHMMETPUYHOE PacIpPOCTPaHEHHe MPOLOJNBHBIX BOJH BIOJIb 00pasylollel Lu-
JUHIpHYecKol ob6osouku Kupxroda — JIsiBa, B3anmoneiicTyollell ¢ HeJJMHEHHO-YIIPYTOH CPenoH.
BBeneHa B paccMoTpeHHe liecTHNapaMeTpuueckasi 060011eHHast MOIeSb HEJTHHEHHO-YIPYTOH Cpelbl,
CBOASAIIASICSA B YACTHBIX Caydasix K mofensaMm Buukinepa, [lactepHaka u Xerenou. BreiBon ypaBHeHHS
OCYLIEeCTBJIEH aCUMITOTHUECKHM METONOM MHOTHX MaclITa0OB B MPEAIOJIOKEHHH, u4To Oe3pas-
MepHble MapaMeTpbl HEJUHEHHOCTH, TUCIIEPCHH U TOHKOCTEHHOCTH HMEIT OJMHAKOBbIH MOPSIIOK
MaJsiocTd. Mcnosnb3oBaHre BBeI€HHOH MOJEJN TO3BOJIMJIO BHISIBUTb JIOTOJHUTEbHbIE BBICOKOUACTOT-
Hble ¥ HU3KOYACTOTHYIO THUCIEPCHH, XapaKTepHU3yIollie PeaKlHio BHELIHEH cpelbl Ha U3THO U CHBHT.
[TokaszaHo, uTO AJs1 BbISIBJEHHs] HeJMMHEHHBIX 3(D(eKTOB, KOMIIEHCHPYIOIIUX AUCIEPCHIO, HEOOXOIUMO
HCI0/1b30BaTh HEKJIACCHUECKHe TeOPHH 000/I0ueK. YCTaHOBIJEHO, 4TO Mofiesib [lacTepHaka momyckaer
«06e3I1CTIepCHOHHOe» COCTOSIHUE, KOTa AUCIepCHs, 00yc/I0BAeHHAsT HHEpPLHeH HOPMAJIBHOTO TepemMe-
IIeHHs, KOMIIEHCHPYeTCsl TUCIIepCHel, TTIOpOoKIaeMOl peaklHeld HeJMHeHHO-yIPyroro 0OCHOBaHHUS Ha
CIIBHT.

KnioueBble ciioBa: LHJIHHAPHUECKAss 000/0UKa, OCECUMMETPUUYHbIE BOJIHbI, HEJUHEHHO-YTIPyroe
OCHOBaHHe, BbICOKOYACTOTHASI AUCIEPCHs, aCUMIITOTHUECKOEe HHTErPUPOBaHHe
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Introduction

The need to study and take into account the influence of an elastic foundation on the
statics and dynamics of deformable systems was realized more than a hundred years ago
from an analysis of the problems put forward by construction practice. The theoretical
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foundations for modeling the interaction of structures with an elastic foundation are
contained in [1-5]. In the monograph [6], published in 1960 and has already become
a classic, a wide class of problems on the refinement of the calculation schemes of
the foundation and the development of simplified methods for calculating structures
on an elastic foundation were solved. In recent decades, numerous results have been
obtained, indicating that the interaction with the surrounding elastic (nonlinear-elastic)
medium must be taken into account when studying the static and dynamic stability
of structures [7-9]. The procedure for the formal construction of elastic foundation
models is described in [10]. An extensive bibliography is given in the review [11]
of theoretical models of elastic and viscoelastic foundations used in the analysis of
oscillatory systems. The review [12] discusses the importance of using the Winkler base
model in problems of adhesive mechanics and “soft matter”. When solving problems of
nonlinear wave dynamics of deformable systems, taking into account the influence of an
external elastic medium leads to a complication of mathematical models, but allows one
to identify new effects that are used in acoustic diagnostics and non-destructive testing
of materials. In [13, 14], in a linear formulation, edge bending waves in a Kirchhoff
plate interacting with the elastic foundations of Winkler and Pasternak were investigated.
In [15], the features of localization in a Bernoulli — Euler beam on an inhomogeneous
elastic foundation are analyzed. It is shown that the existence of a localized solution to
the dynamic problem caused by the weakening of the stiffness of the foundation leads
to a local loss of stability in statics. The phenomenon of localization of nonlinear waves
in elastic bodies with inclusions is studied in [16]. It has been established that the
cubic nonlinearity of the elastic foundation does not eliminate the localization phenomena
and does not distort the shapes of localized waves, but leads to the dependence of the
frequency of oscillations of the localized wave on the amplitude. In [17], the dispersion
and spatial localization of flexural waves in a Timoshenko beam lying on a nonlinear
elastic foundation were investigated. Localized longitudinal and flexural waves in a
rod interacting with a nonlinear elastic medium are considered in [18]. In [19], as a
result of an analysis of an axisymmetric wave process in a cylindrical Kirchhoff - Love
shell, it was shown that for the existence of exact solitary wave solutions and the
development of modulation instability, a soft type of nonlinearity of the external elastic
medium is required. A generalization of the Winkler model, taking into account the
reaction of the base in the longitudinal direction, was introduced in [20]. In the same
place, for longitudinal waves in a reinforced cylindrical shell, the generalized Shamel -
Ostrovsky equation is derived, and solitary wave, periodic and compact solutions are
constructed [21].

This article, devoted to the derivation and analysis of an equation that simulates the
axisymmetric propagation of longitudinal waves in a cylindrical shell interacting with
an external nonlinear elastic medium, is organized as follows. In the first section, a
nonlinear quasi-hyperbolic equation is derived from the equations of motion of an element
of the Kirchhoff — Love shell using the asymptotic method of multiscale expansions. A
multiparameter model of a nonlinear elastic medium is introduced, which generalizes
the classical models of Winkler, Pasternak, and Hetenyi. In the second section, we
briefly analyze important special cases of the derived equation. In conclusion, the results
obtained are discussed.

1. Derivation of a nonlinear quasi-hyperbolic equation

The initial object of research is the equations of motion of an element of an infinite
cylindrical Kirchhoff — Love shell [22], interacting with a nonlinear elastic medium. An
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axisymmetric case is considered, which ignores the dependence on the circumferential
coordinate:

ho*u  ON,

oE e = (1)
vh&*w  O*M, 1 0 owY
g Ot? ox? RNy ox N or )

0%w M*w
= - (fwlw + fuaw® + fuzw® — gpw + gh@) (2)
The coordinate axes Ox, Oy, and Oz are directed respectively along the longitudinal axis
of the shell, along the circumference of its cross-section, and along its radius towards
the cross-section center. The motions of the shell’s middle surface along the axes Ox
and Oz are designated as w and w. The other designations shall be as follows: N,
and M, are normal force and bending moment in the cross-section of the shell, N, is
normal force in the longitudinal section of the shell, v is the specific gravity of the shell
material, R and h are the radii of curvature of the shell and thickness of its wall, ¢
is the gravitational acceleration; ¢ is time; fu1, fu2, fws are coefficients characterizing
the resistance of the external medium during its normal deformation, f,; is coefficient
characterizing the resistance of the external medium during its shear deformation, g,
gn are the coefficients of the Pasternak and Hetenyi elastic foundation models, taking
into account, respectively, the shear and bending stifinesses of the external medium
layer. Thus, a generalized six-parameter model of an external nonlinearly elastic medium
is introduced into consideration, which is reduced in particular cases to the models of
Winkler, Pasternak, and Hetenyi. On the right-hand sides of the system (1)-(2), there
are terms responsible for the influence of the external environment on the shell dynamics
and are absent in the case of the classical model.
Taking into account physical relations

h3E

it ©

hE hE
Nle_—/ﬂ(é‘x—i—ﬂgy), Ny:l——'[ﬂ(gy—i_ugx)’ Mx:
where ¢,,¢, are deformations along axes Oz and Oy, k, is the parameter of curvature
change, F and p are Young’s modulus and Poisson’s ratio of the shell material,
together with the equations for the connection of deformations with displacements

£r = 2% 4 %(%)2, e, =—2, k, = —2% we obtain the equations of motion of the shell
element in displacements:
2 2 2
yhow - Eh (07w 0w (0w g\ g )
g o2  1—p? \0x? Oxr \0x*> R
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After the transition to dimensionless variables

u w
—— W=-= X= et
U A? h? 9 (6)

z
!
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where scaling factors A and [ play the role of the amplitude of longitudinal displacement
and the characteristic wavelength of the disturbance, respectively, in the system of

equations (4), (5) dimensionless combinations of parameters %, \/';—QR and }% are revealed,

which characterize the nonlinearity of the wave process, its dispersion and the thinness
of the shell. We will consider the case when the parameters of nonlinearity, dispersion,
and thinness are of the same order of smallness:

A hR  h
—=/-=5=cK 1L (7)

Thus, we consider a thin-walled shell (h < R), in which long (R < [) longitudinal
(h < A) waves of small amplitude (A < R) propagate. Introducing dimensionless
parameters

R 1 1
Fu = uls G = ) G = )
R 2uR? 3 2R3
le = E_ngwb Fw2 Iu fw27 Fw3 - H} fw37

we pass to the slow-time coordinate system 5 =X-0CT, 7= 5T. Finally, in accordance
with the multiscale method, we represent the dependent variables as the sum of the main
part and the small correction

Ur)=U (& 1) +eU (§,7), W(ET)=Wo(&T)+eWi(£,71). 9)

Assuming that the new dependent variables (9), their derivatives with respect to £ and 7,
as well as dimensionless parameters (8), are of the order of unity, we group the terms
in the equations in powers of the small parameter . Equating to zero the terms in the
leading order, we obtain the system of linear equations

9*U, oW,
e o_ Yo _
oU,
—u85°+wo—o (11)

the compatibility of which requires the fulfillment of equality W, = uago, which
establishes the relationship between longitudinal and transverse displacements in the

linear approximation, and also condition Cy = y/1 — u?, from which it follows that the
perturbation propagates along the shell with a rod velocity [23].
In the next order in £, we have the system of equations

an 82U1 . 24/1 — /ﬂ 82U0 2
Mo = v g (=) Palh, (12)
o°U, 93U, U, 1 oUu\? 1 Uy \ >
X (Gh 855 —(Gp ].) 863 +Fw1 85 +§Fw2(a—§) +§Fw3(8_§) . (13)

Eliminating variables W; and U; from system (12), (13), we obtain
2 02U, U, 0*U,
. Gh > — (Gp - 1) ag4o+

2, /1 — p20¢ (97' g6
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8U0 an 2 82UO
+ <Fw1+Fw28_€+Fw3(a_§) ) 8—52_Fu1 Uy = 0. (14)

The derived equation (14) is a sixth-order nonlinear quasi-hyperbolic equation, containing,
in addition to the traditional gradient-type terms, the term with the component of the
desired displacement field, which characterizes the resistance of the external medium
during its shear deformation. For the first time, such an additional term appeared in
the already classic article by L. A. Ostrovsky [24] devoted to the study of nonlinear
waves in a rotating ocean. The presence of this term, which introduces additional low-
frequency dispersion into the model, significantly complicates the analytical structure
of the equation and does not allow obtaining exact solitary wave and periodic solutions.
The derived non-integrable equation (14) can be called the sixth order generalized
Boussinesq — Ostrovsky equation.

2. Special cases of equation (14)

1. The classical model of Winkler’s linear elastic medium. In this case Fy,; = Fy» =
= Fy3 = Gy = G, =0, and equation (14) becomes linear. This means that when studying
longitudinal waves in shells, the geometric nonlinearity of the classical Kirchhoff — Love
model does not affect the wave process. This conclusion is valid on a time interval of the
order of 1/e.

2. Nonlinear-elastic Winkler — Pasternak — Hetenyi foundation (F,; = 0). Equation
(14) in this case contains three dispersion terms: to the traditional dispersion caused by
the inertia of normal displacement, two additional ones are added, due to the reaction
of the elastic foundation to shear and bending. With respect to the component of the
longitudinal deformation 88% equation (14) takes the form of the modified Kawahara
equation ((14) without the last term), which has classes of exact periodic and solitary-
wave solutions [25]. Here the problem of their physical realizability becomes the most
important. In [26] it is rightly noted that “... many equations have solutions that are
unsuitable from the point of view of common sense. For example, taking into account
the higher-order dispersion leads to the fact that the group velocity of small-scale
perturbations becomes greater than the phase velocity, while in the original equations
the group velocity is always less than the phase velocity. In addition, such equations
often have additional solutions that do not correspond to the known data on waves in the
framework of equations complete in nonlinearity.”

3. The bending stiffness of the external medium layer is not taken into account
(G, = 0). The higher-order dispersion disappears in equation (14). The result is a
combination of the classical and modified Ostrovsky equations — the so-called Gardner -
Ostrovsky equation

9 2 AU, 83U, Uy Fus (0U\"  Fus (U _
3_§<u2 Tmor U ge Thage TG ) T \ae) )T
— P U, (15)

Recently, there has been a significant increase in interest in the study of its exact and
approximate solutions [27]. In this case, the external medium can be called the nonlinear
elastic Pasternak medium, which, in contrast to the Winkler medium, allows one to
reveal a new property of equation (14). The high-frequency dispersion coefficient can
be positive, negative, or even zero, depending on the value of the coefficient GG,. In the

MexaHuka 201



@Ms& Capar. yH-1a. Hos. cep. Cep.: Maremarvka. Mexanuka. iHgpopmarnka. 2022. T. 22, Bbin. 2

“dispersionless” case, the reduced Ostrovsky equation

o 2 U, Uy Fus (0Ug\?  Fus (0U\*\
3—5<M2 Fior e T (ag) +T<a_§> = fulh {19

is obtained, which has integrable reductions and exact localized solutions [28,29]. The
possibility of "controlling” the sign of the high-frequency dispersion makes it possible to
use the "antisoliton theorem” [30] and to identify regimes that allow stable propagation
of soliton-like perturbations.

3. Discussion and conclusions

When studying the propagation of axisymmetric longitudinal waves in elastic thin
shells on the basis of the geometrically nonlinear Kirchhoff — Love model, it is not possible
to analytically describe deformation solitons. In other words, asymptotic integration of
the equations of motion of a shell element does not allow one to obtain an equation of
the Korteweg —de Vries type for the longitudinal deformation component. This is due to
the absence in the equations of motion of terms with quadratic (so-called hydrodynamic)
nonlinearity such as U? and U,U,,. It is obvious that the use of geometrically nonlinear
equations of the classical model of the Timoshenko type for the analysis of longitudinal
waves leads to similar results. Consequently, an equation containing the necessary
nonlinear terms can only be obtained using nonclassical shell theories based on refined
models. In this article, nonlinearity, which compensates for dispersion and contributes
to the formation of soliton-like longitudinal waves, is introduced on the basis of a
generalized model of a nonlinear elastic foundation. Taking into account the fact that
in shells, in contrast to plates and rods, longitudinal and normal displacements are
connected already in the linear approximation, both equations of motion (1)-(2) contain
terms that characterize the resistance of the external medium. The introduced model
in particular cases is reduced to the linear and nonlinear models of Winkler, Pasternak,
and Hetenyi. The use of the Pasternak model makes it possible to control the sign in
front of high-frequency dispersion and to reveal the conditions for the propagation of
solitary waves. In this case, a dispersionless state becomes possible, when the dispersion
due to the inertia of normal displacement is compensated by the dispersion generated
by the reaction of the nonlinear elastic foundation to shear. A brief analysis of special
cases of the generalized Boussinesq — Ostrovsky equation (14) showed that the choice
of a nonlinear elastic foundation model has a significant effect on the resulting wave
pattern, and the problem of physical realizability of the corresponding exact solutions
comes to the fore.
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