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Abstract. There is some evidence that in certain cases a contact of rough elastic solids is multiply
connected, i.e. have regions in it where contact surfaces are apart from each other and the contact pressure
is zero. The issue of the connectivity in rough elastic contacts has both theoretical and practical interest,
especially for seals. In this paper, we extend the earlier conducted analysis of rough contacts without
coatings in plane and axially symmetric formulations on the cases of plane and axially symmetric rough
elastic contacts with special coatings and compare our findings. The main goal of the paper is to obtain
the exact analytical solutions of plane and axially symmetric rough elastic contacts with a special coating
and analyze their properties such as contact connectivity and contact pressure smoothness compared to
the smoothness of the surface roughness profile. This goal is achieved by using solution expansions in
Chebyshev and Legendre orthogonal polynomials. A range of contact parameters has been determined for
which the contacts are connected individually.
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Соединение в шероховатой плоскости и осесимметричных контактах
со специальным покрытием
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Аннотация. Имеются некоторые свидетельства того, что в определенных случаях контакт шерохова-
тых упругих тел является многосвязным, т. е. в нем имеются области, где контактные поверхности
находятся на расстоянии друг от друга, а контактное давление равно нулю. Вопрос о соединении
в шероховатых упругих контактах представляет как теоретический, так и практический интерес,
особенно для уплотнений. В этой статье мы расширяем ранее проведенный анализ шероховатых
контактов без покрытий в плоских и осесимметричных композициях на случаи плоских и осесиммет-
ричных шероховатых упругих контактов со специальными покрытиями и сравниваем наши результаты.
Основная цель работы — получить точные аналитические решения для плоских и осесимметричных
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шероховатых упругих контактов со специальным покрытием и проанализировать их свойства, такие
как контактная связность и гладкость контактного давления, по сравнению с гладостью профиля
шероховатости поверхности. Эта цель достигается за счет использования разложений решения в
ортогональные многочлены Чебышева и Лежандра. Был определен диапазон контактных параметров,
для которых контакты односвязны.
Ключевые слова: плоские и осесимметричные контакты с шероховатым покрытием, ортогональные
многочлены Чебышева и Лежандра, сходимость рядов и решение, односвязные контакты с шероховатым
покрытием
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Introduction

The studies of elastic rough contacts have a long history. A number of analytical and semi-
analytical models using various assumptions (such as wavy surfaces, partial contact, periodic and
random surface profiles) have been proposed [1–6], including models with adhesion [7–9] and
numerical studies [10]. In [11], the authors analyzed analytically rough contacts with roughness
described by the Weierstrass function, which is continuous everywhere but not differentiable
anywhere. This analysis led to the conclusion that, under such an assumption, a rough contact is
always multi-connected, i.e. it has a series of places where contact pressure is positive (actual
contact takes place) and a series of areas where contact surfaces are apart from each other, i.e.
pressure is zero. In all these studies, the elastic solids were assumed to be made of a homogeneous
elastic material, and no coatings of any kind were considered.

That brought to the forefront two interconnected questions about solids made of homogeneous
elastic material and elastic solids with coatings: (a) What would be a reasonable assumption about
the smoothness of rough surfaces? and (b) Is it possible to get singly connected rough contacts?
In [12–14], we see the first attempts to answer both of these questions for contacts without
coatings and show how they are interconnected. In [12], besides theoretical analysis, some
experimental studies of real ground surfaces using optical and electron force microscopes were
performed. The connectivity of real rough surfaces has certain serious practical consequences
such as leakage through the gaps between surface asperities in contact sealing lubricated spaces.
Therefore, besides a purely theoretical interest in the issue of rough contact connectivity, there is
also a practical one.

The main goal of this paper is to extend the findings of [12–14] on the cases of plane and
axially symmetric rough contacts with special coatings. In other words, it is to analyze the
connectivity in a contact of rough surface and to analyze the dependence on the smoothness of
the roughness profile and connectivity. In the process, the exact solutions of the plane and axially
symmetric problems for rough elastic contact with special coatings with the help of Chebyshev
and Legendre orthogonal polynomials.

1. Formulation of the problem for rough plane contacts with a coating

Let us assume that a rigid infinite in the 𝑦 direction punch with the bottom half-width 𝑎 is
indented in a coated half-plane made of a homogeneous elastic material with elastic modulus E
and Poisson’s ratio 𝜈 (see Figure).

Let us assume that the coating is thin and its vertical displacement is represented by the
Winkler – Fuss relationship with the coefficient proportionality dependent on the distance from the
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Figure. The general view of a rigid punch
indented in an elastic half-plane with a special

coating

contact center, i.e. 𝑤𝑐(𝑥) = 𝜆
√︀

1− 𝑥2/𝑎2𝑝(𝑥),
where 𝑤𝑐(𝑥) is the vertical displacement of the
thin coating subjected to pressure 𝑝(𝑥), 𝑥 is the
coordinate of the point in the contact, 𝜆 is a
constant nonnegative coefficient proportionality.
The coordinate system is introduced in such a way
that the 𝑧-axis is directed upward, the 𝑦-axis is
directed along the punch length, and the 𝑥-axis
is directed along the punch contact with the half-
plane. The punch bottom texture is described by a
continuous function 𝑧 = 𝑓(𝑥). It is assumed that
the contact is frictionless. The load applied to the
punch is directed along the negative 𝑧-axis and is
equal to 𝑃 . In this classical formulation for singly
connected contacts the problem equations are as
follows [15]

𝜆
√︀
1− 𝑥2/𝑎2𝑝(𝑥) +

2(1− 𝜈2)

𝜋𝐸

𝑎∫︁
−𝑎

𝑝(𝑡) ln
𝑎

| 𝑥− 𝑡 |
𝑑𝑡 = 𝛿 − 𝑓(𝑥),

𝑎∫︁
−𝑎

𝑝(𝑥)𝑑𝑥 = 𝑃, (1)

where the contact pressure 𝑝(𝑥) and the rigid vertical displacement of the punch 𝛿 caused by the
applied load 𝑃 are unknown and need to be determined.

2. Analysis of the plane problem

Let us use for solution of the formulated problem expansions in series with respect to the
Chebyshev orthogonal polynomials 𝑇𝑛(𝑥) of the first kind [16]. Specifically, let us assume that

𝑓(𝑥) = 𝜔𝑓0(𝑥), 𝑓0(𝑥) =

∞∑︁
𝑛=0

𝛼𝑛𝑇𝑛

(︁𝑥
𝑎

)︁
,

𝛼0 =
1

𝜋

𝑎∫︁
−𝑎

𝑓0(𝑎𝑥)𝑑𝑥√
1− 𝑥2

, 𝛼𝑛 =
1

𝜋

𝑎∫︁
−𝑎

𝑓0(𝑎𝑥)𝑇𝑛(𝑥)𝑑𝑥√
1− 𝑥2

, 𝑛 = 1, 2, . . . ,

(2)

where coefficients 𝛼𝑛 are known. Here 𝜔 is a dimensionless constant characterizing the overall
height of the asperity profile described by function 𝑓(𝑥) while 𝑓0(𝑥) describes the nominal
roughness profile.

We will need to use the following relationships [17]

1

𝜋

1∫︁
−1

ln
1

| 𝑥− 𝑦 |
𝑑𝑦√︀
1− 𝑦2

= ln 2,
1

𝜋

1∫︁
−1

ln
1

| 𝑥− 𝑦 |
𝑇𝑛(𝑦)𝑑𝑦√︀
1− 𝑦2

=
1

𝑛
𝑇𝑛(𝑥), 𝑛 = 1, 2, . . . (3)

The solution to Problem (1) will be searched in the form of series, i.e.

𝑝(𝑥) =
∞∑︁
𝑛=0

𝛽𝑛
𝑇𝑛
(︀
𝑥
𝑎

)︀√︀
1− 𝑥2/𝑎2

, (4)

where coefficients 𝛽𝑛, 𝑛 = 0, 1, . . ., are unknown and need to be determined. Substituting (4)
into equations (1) and taking into account the orthogonality of 𝑇𝑛(𝑥), 𝑛 = 0, 1, . . ., on interval
−1 < 𝑥 < 1 one obtains

𝜆
∞∑︁
𝑛=0

𝛽𝑛𝑇𝑛

(︁𝑥
𝑎

)︁
+

2(1− 𝜈2)

𝐸
𝑎

{︃
𝛽0 ln 2 +

∞∑︁
𝑛=1

𝛽𝑛
𝑛
𝑇𝑛

(︁𝑥
𝑎

)︁}︃
=
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= 𝛿 − 𝜔

∞∑︁
𝑛=0

𝛼𝑛𝑇𝑛

(︁𝑥
𝑎

)︁
, | 𝑥 |< 𝑎, 𝛽0 =

𝑃

𝜋𝑎
. (5)

From these equations, it is easy to find that

𝛿 = 𝜔𝛼0 +
𝑃

𝜋𝑎

[︂
𝜆+ 2 ln 2

1− 𝜈2

𝐸
𝑎

]︂
, 𝛼𝑛0 =

[︂
𝜆+

2(1− 𝜈2)

𝐸

𝑎

𝑛

]︂−1

,

𝑝(𝑥) =
1√︀

1− 𝑥2/𝑎2

{︃
𝑃

𝜋𝑎
− 𝜔

∞∑︁
𝑛=1

𝛼𝑛𝛼𝑛0𝑇𝑛

(︁𝑥
𝑎

)︁}︃
, | 𝑥 |< 𝑎.

(6)

Due to the fact that for 𝜆 > 0 the series
∞∑︀
𝑛=1

𝛼𝑛𝛼𝑛0 converges absolutely while the series

∞∑︀
𝑛=1

𝛼𝑛𝛼𝑛0𝑇𝑛
(︀
𝑥
𝑎

)︀
converges absolutely and uniformly (remember that | 𝑇𝑛

(︀
𝑥
𝑎

)︀
|6 1 for | 𝑥 |6 𝑎) if

the series
∞∑︀
𝑛=1

𝛼𝑛 converges absolutely. For the latter to take place it is sufficient to assume that

𝛼𝑛 = 𝑂

(︂
1

𝑛𝛾

)︂
, 𝛾 > 1, 𝑛→ ∞. (7)

Moreover, the higher the value of 𝛾 the more differentiable are functions 𝑓(𝑥) and 𝑝(𝑥) (see [12]).
For the pressure function 𝑝(𝑥) from (6) to be nonnegative in the entire contact region it is

sufficient for the following inequality

𝑃

𝜋𝑎
− 𝜔

∞∑︁
𝑛=1

𝛼𝑛𝛼𝑛0𝑇𝑛

(︁𝑥
𝑎

)︁
> 0, | 𝑥 |< 𝑎, (8)

to be valid. Due to the fact that | 𝑇𝑛(𝑥) |6 1, 𝑛 = 0, 1, . . ., for | 𝑥 |6 1 for this inequality to be
true it is sufficient that

𝑃

𝜋𝑎
− 𝜔

∞∑︁
𝑛=1

| 𝛼𝑛 | 𝛼𝑛0 > 0. (9)

Therefore, due to the convergence of the series in (9) there exists a finite positive number 𝜔0

that for any 𝜔 from the interval

0 6 𝜔 6 𝜔0 =
𝑃

𝜋𝑎

{︃ ∞∑︁
𝑛=1

| 𝛼𝑛 | 𝛼𝑛0

}︃−1

, (10)

the distribution of contact pressure 𝑝(𝑥) is nonnegative in the entire contact region. For the strict
positivity of 𝑝(𝑥) it is sufficient to require that 0 6 𝜔 < 𝜔0.

Using the exact solutions (6) and (10) it is easy to calculate contact pressure 𝑝(𝑥) and the
range of the parameter 𝜔 for which the contact pressure is nonnegative in the contact region. As
it was shown in [12–14] by a series of measurements of real ground (rough) steel surfaces on an
optical profiler profiler and an electronic force microscope, theoretically, the real rough surfaces
are described by not just continuous but smooth distribution functions. The differentiability of
pressure 𝑝(𝑥) from (6) for 𝜆 > 0, 0 6 𝜔 6 𝜔0, and | 𝑥 |< 𝑎 is the same as the differentiability of

the roughness distribution 𝑓(𝑥) for | 𝑥 |< 𝑎 as the convergence of the series
∞∑︀
𝑛=1

| 𝛼𝑛 | 𝛼𝑛0 and

the series
∞∑︀
𝑛=1

| 𝛼𝑛 | for 𝑓(𝑥) are the same. The case of 𝜆 = 0 is analyzed in [12].

It is interesting to note that the behavior of 𝑝(𝑥) near the contact boundaries 𝑥 = ±𝑎 in
the present problem is very different from the behavior of 𝑝(𝑥) in the plane contact problem
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with a coating which normal displacement 𝑤𝑐(𝑥) subjected to pressure 𝑝(𝑥) is described by the
relationship 𝑤𝑐(𝑥) = 𝜆𝑝(𝑥), where 𝜆 is a constant nonnegative coefficient proportionality [15].
Specifically, in the present problem 𝑝(𝑥) → +∞ as 𝑟 → ±𝑎 while in [15] 𝑝(𝑥) → 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 as
𝑟 → ±𝑎. This behavior of 𝑝(𝑥) in our problem becomes obvious from the asymptotically valid
solution 𝑝(𝑥) = 1

𝜆
𝛿−𝑓(𝑥)√
1−𝑥2/𝑎2

+ . . . for 𝜆≫ 1.

3. Formulation of the problem for rough axially symmetric contacts
with a coating

Let us consider an axially symmetric rigid punch of radius 𝑎 which is indented in a coated
half-space made of a homogeneous elastic material with elastic modulus 𝐸 and Poisson’s ratio
𝜈. Let us assume that the coating is thin and its vertical displacement is represented by the
Winkler-Fuss relationship with the coefficient proportionality dependent on the distance from
the contact center, i.e. 𝑤𝑐(𝑟) = 𝜆

√︀
1− 𝑟2/𝑎2𝑝(𝑟), where 𝑤𝑐(𝑟) is the vertical displacement of the

thin coating subjected to pressure 𝑝(𝑟), 𝑟 is the radial distance from the contact center, 𝜆 is a
constant nonnegative coefficient proportionality. The coordinate system is introduced in such
a way that the 𝑧-axis is directed upward along the punch axis while in the 𝑥𝑦-plane a polar
coordinate system with radial variable 𝑟 =

√︀
𝑥2 + 𝑦2 is introduced. The contact arrangement

is similar to the one shown in Figure. The punch bottom texture is described by a continuous
function 𝑧 = 𝑓(𝑟). It is assumed that the contact is frictionless. The load applied to the punch
is directed along the negative 𝑧-axis and is equal to 𝑃 . In this classical formulation for singly
connected contacts the problem equations are as follows [15]

𝜆

√︂
1− 𝑟2

𝑎2
𝑝(𝑟) +

8(1− 𝜈2)

𝜋𝐸

𝑎∫︁
0

𝜌

𝑟 + 𝜌
𝐾

(︂
2
√
𝑟𝜌

𝑟 + 𝜌

)︂
𝑝(𝜌)𝑑𝜌 = 𝛿 − 𝑓(𝑟),

𝑎∫︁
0

𝑟𝑝(𝑟)𝑑𝑟 =
𝑃

2𝜋
, (11)

where 𝐾(·) is the full elliptic integral of the second kind [16], 𝑝(𝑟) and 𝛿 are the unknown
pressure and punch rigid displacement which need to be determined.

4. Analysis of the axially symmetric problem

First, let us notice that the set of all Legendre orthogonal polynomials 𝑃2𝑛

(︂√︁
1− 𝑟2

𝑎2

)︂
,

𝑛 = 0, 1, . . ., is complete in the functional space 𝐿2(0, 1) of all quadratically integrable functions
on the interval (0, 1). The same set of functions represents the basis in the functional space
𝐶(0, 1) of all continuous functions on (0, 1). Therefore, any continuous function 𝑓(𝑟) describing
the the texture of the punch bottom can be represented in the form [16]

𝑓(𝑟) = 𝜔𝑓0(𝑟), 𝑓0(𝑟) =

∞∑︁
𝑛=0

𝛼𝑛𝑃2𝑛

(︃√︂
1− 𝑟2

𝑎2

)︃
,

𝛼𝑛 = (4𝑛+ 1)

1∫︁
0

𝑓0(𝑎𝑟)𝑃2𝑛

(︁√︀
1− 𝑟2

)︁ 𝑟𝑑𝑟√
1− 𝑟2

,

(12)

where coefficients 𝛼𝑛 are known. Here 𝜔 is a dimensionless constant characterizing the overall
height of the asperity profile described by function 𝑓(𝑟) while 𝑓0(𝑟) describes the nominal
roughness profile.

Due to the convergence of this series in 𝐿2(0, 1) it also converges to our continuous function
𝑓(𝑟) almost everywhere (possibly, except for a set of points from (0, 1) of measure zero). On the
other hand, the series for 𝑓0(𝑟) in (12) is a power series and, therefore, within any closed region
[𝑏, 𝑐] ⊂ (0, 1) it converges absolutely and uniformly. It means that this series not only converges
to a continuous function 𝑓0(𝑟) in (0, 1) but it is also a differentiable function.

Механика 67



Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика. 2024. Т. 24, вып. 1

We are ready to find the solution to our problem (11) using the following relationship [17]

1∫︁
0

𝜌𝑃2𝑛

(︁√︀
1− 𝜌2

)︁
(𝑟 + 𝜌)

√︀
1− 𝜌2

𝐾

(︂
2
√
𝑟𝜌

𝑟 + 𝜌

)︂
𝑑𝜌 =

{︂
𝜋

2

(2𝑛− 1)!!

(2𝑛)!!

}︂2

𝑃2𝑛

(︁√︀
1− 𝑟2

)︁
. (13)

Let us search for the solution of problem (11) in the form

𝑝(𝑟) =
∞∑︁
𝑛=0

𝛽𝑛

𝑃2𝑛

(︂√︁
1− 𝑟2

𝑎2

)︂
√︁
1− 𝑟2

𝑎2

, (14)

where constants 𝛽𝑛 are unknown and have to be determined from the solution.
Substituting (12) and (14) into (11) and using (13) we obtain

𝜆
∞∑︁
𝑛=0

𝛽𝑛𝑃2𝑛

(︃√︂
1− 𝑟2

𝑎2

)︃
+

8(1− 𝜈2)

𝜋𝐸
𝑎

∞∑︁
𝑛=0

𝛽𝑛

{︂
𝜋

2

(2𝑛− 1)!!

(2𝑛)!!

}︂2

𝑃2𝑛

(︃√︂
1− 𝑟2

𝑎2

)︃
=

= 𝛿 − 𝜔
∞∑︁
𝑛=0

𝛼𝑛𝑃2𝑛

(︃√︂
1− 𝑟2

𝑎2

)︃
,

∞∑︁
𝑛=0

𝛽𝑛

𝑎∫︁
0

𝑟

𝑃2𝑛

(︂√︁
1− 𝑟2

𝑎2

)︂
√︁
1− 𝑟2

𝑎2

𝑑𝑟 =
𝑃

2𝜋
.

(15)

Here, we interchanged the order of integration and summation which is legitimate for the series
in (12) being convergent uniformly in any closed interval [𝑏, 𝑐] ⊂ (0, 𝑎).

Using the orthogonality of polynomials 𝑃2𝑛 from (14) we find

𝛿 = 𝜔𝛼0 +
𝑃

2𝜋𝑎2

(︂
𝜆+ 2𝜋𝑎

1− 𝜈2

𝐸

)︂
,

𝛽0 =
𝑃

2𝜋𝑎2
, 𝛽𝑛 = − 𝜔𝛼𝑛

𝜆+ 2𝜋𝑎1−𝜈2

𝐸

{︁
(2𝑛−1)!!
(2𝑛)!!

}︁2 , 𝑛 = 1, 2, ...
(16)

Therefore, based on (14) and (16) the solution to our problem (11) has the form

𝛿 = 𝜔𝛼0 +
𝑃

2𝜋𝑎2

(︂
𝜆+ 2𝜋𝑎

1− 𝜈2

𝐸

)︂
, 𝛽𝑛0 =

{︃
𝜆+ 2𝜋𝑎

1− 𝜈2

𝐸

[︂
(2𝑛− 1)!!

(2𝑛)!!

]︂2}︃−1

,

𝑝(𝑟) =
1√︁

1− 𝑟2

𝑎2

{︃
𝑃

2𝜋𝑎2
− 𝜔

∞∑︁
𝑛=1

𝛼𝑛𝛽𝑛0𝑃2𝑛

(︃√︂
1− 𝑟2

𝑎2

)︃}︃
.

(17)

Obviously, for 𝜆 > 0 one has

| 𝛽𝑛 |< 𝜔

𝜆
| 𝛼𝑛 |, 𝑛 = 1, 2, ... (18)

Therefore, if the series
∞∑︀
𝑛=1

| 𝛼𝑛 | converges then for 𝜆 > 0 the series
∞∑︀
𝑛=1

𝛼𝑛𝛽𝑛0 converges

absolutely and series
∞∑︀
𝑛=1

𝛼𝑛𝛽𝑛0𝑃2𝑛

(︂√︁
1− 𝑟2

𝑎2

)︂
converges absolutely and uniformly for 0 6 𝑟 6 𝑎

because | 𝑃2𝑛

(︂√︁
1− 𝑟2

𝑎2

)︂
|6 1 for 0 6 𝑟 6 𝑎.

Solution (17) indicates that pressure 𝑝(𝑟) is nonnegative if

𝑃

2𝜋𝑎2
− 𝜔

∞∑︁
𝑛=1

𝛼𝑛𝛽𝑛0𝑃2𝑛

(︃√︂
1− 𝑟2

𝑎2

)︃
> 0, 0 6 𝑟 6 𝑎. (19)
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Taking into account the fact that | 𝑃2𝑛(𝑥) |6 1 for all 0 6 𝑥 6 1 [16] it becomes clear that it is
sufficient for parameter 𝜔 to be small enough for the inequality

𝑃

2𝜋𝑎2
− 𝜔

∞∑︁
𝑛=1

| 𝛼𝑛 | 𝛽𝑛0 > 0. (20)

to be valid. The latter always takes place if the series
∞∑︀
𝑛=1

| 𝛼𝑛 | is convergent. Therefore, if (20)

is satisfied then the function of pressure 𝑝(𝑟) is nonnegative in [0, 𝑎), and the contact is singly
connected. If in (20) we have a strict inequality then 𝑝(𝑟) is positive in [0, 𝑎).

For 𝜆 > 0 the above conclusions are certainly true if 𝛼𝑛 satisfy (7). By the way, inequality
(7) guarantees that the series in (12) converges uniformly for 0 6 𝑟 6 𝑎 and, therefore converges
everywhere in this interval to a continuous function 𝑓(𝑟). In other words, if 𝛼𝑛 satisfy (7) then
there exists such a finite positive number 𝜔0 that for

0 6 𝜔 < 𝜔0 =
𝑃

2𝜋𝑎2
/

∞∑︁
𝑛=1

| 𝛼𝑛 | 𝛽𝑛0, 𝛽𝑛0 =

{︃
𝜆+ 2𝜋𝑎

1− 𝜈2

𝐸

[︂
(2𝑛− 1)!!

(2𝑛)!!

]︂2}︃−1

, (21)

the function of pressure 𝑝(𝑟) is positive in the entire contact region 0 6 𝑟 < 𝑎.
Using the exact solution (17) and (21) it is easy to calculate contact pressure 𝑝(𝑟) and the

range of the parameter 𝜔 for which the contact pressure is nonnegative in the contact region.
The differentiability of pressure 𝑝(𝑟) from (17) for 𝜆 > 0, 0 6 𝜔 < 𝜔0, and 0 6 𝑟 < 𝑎 is the
same as the differentiability of the roughness distribution 𝑓(𝑟) due to the fact that the series
∞∑︀
𝑛=1

| 𝛼𝑛 | 𝛽𝑛0 converges exactly the same way as the series
∞∑︀
𝑛=1

| 𝛼𝑛 | of the absolute values

of the coefficients 𝛼𝑛 of the series for 𝑓(𝑟). With respect to the differentiability of real ground
surfaces, please see [12]. The case of 𝜆 = 0 is analyzed in [14].

It is interesting to note that the behavior of 𝑝(𝑟) near the contact boundary in the present
problem is very different from the behavior of 𝑝(𝑟) in the axially symmetric contact problem
with a coating which normal displacement 𝑤𝑐(𝑟) subjected to pressure 𝑝(𝑟) is described by the
relationship 𝑤𝑐(𝑟) = 𝜆𝑝(𝑟), where 𝜆 is a constant nonnegative coefficient proportionality [15].
Specifically, in the present problem 𝑝(𝑟) → +∞ as 𝑟 → 𝑎 while in [15] 𝑝(𝑟) → 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 as
𝑟 → 𝑎. This behavior of 𝑝(𝑟) in our problem becomes obvious from the asymptotically valid
solution 𝑝(𝑟) = 1

𝜆
𝛿−𝑓(𝑟)√
1−𝑟2/𝑎2

+ . . . for 𝜆≫ 1.

Closure

A quantitative and qualitative analysis of plane and axially symmetric frictionless contacts
with special coatings has been proposed. The exact solutions of the problems in series are
obtained. In both plane and axially symmetric cases of rough elastic contacts with coatings the
ranges of contact parameters for which contacts are singly connected have been determined.
The limit of the overall roughness height 𝜔0 below which it is guaranteed that the pressure
distribution is positive within the entire contact depends on the material elastic parameters,
coating property, applied load, contact size, and the nominal roughness distribution. It is clear
that as the elastic modulus 𝐸 and applied load 𝑃 increase while the coating coefficient 𝜆 and
contact size 𝑎 decrease the range of the surface roughness [0, 𝜔0] for which a singly connected
contact is possible increases.

The solutions obtained above for the cases of the plane and axially symmetric problem
formulations with fixed contact boundaries can be used for the solution of contact problems with
unknown contact boundaries (see [13]).
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