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Abstract. There is some evidence that in certain cases a contact of rough elastic solids is multiply
connected, i.e. have regions in it where contact surfaces are apart from each other and the contact pressure
is zero. The issue of the connectivity in rough elastic contacts has both theoretical and practical interest,
especially for seals. In this paper, we extend the earlier conducted analysis of rough contacts without
coatings in plane and axially symmetric formulations on the cases of plane and axially symmetric rough
elastic contacts with special coatings and compare our findings. The main goal of the paper is to obtain
the exact analytical solutions of plane and axially symmetric rough elastic contacts with a special coating
and analyze their properties such as contact connectivity and contact pressure smoothness compared to
the smoothness of the surface roughness profile. This goal is achieved by using solution expansions in
Chebyshev and Legendre orthogonal polynomials. A range of contact parameters has been determined for
which the contacts are connected individually.
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AnHoTammsa. VmeoTcs HEKOTOpble CBUIETENbCTBA TOTO, UTO B OINpEEJNEHHBIX ClyuasiX KOHTAKT LIepoXoBa-
THIX YNPYTUX TeJl 5IBJISIETCS MHOTOCBSI3HBIM, T.€. B HEM UMeloTCsl 00J1aCTH, Tle KOHTAKTHble I0BEPXHOCTH
Haxo[sTCsl Ha PacCTOSHUM APYT OT ApYyra, a KOHTaKTHOe NaBJieHHe paBHO HYJ10. Borpoc o coenuHenuu
B LUEPOXOBATBIX YMPYTHX KOHTAaKTaX IpeACTaB/sieT KaK TeopeTHUYeCKHUH, Tak U NpPaKTHUYECKUH HHTepec,
0COOeHHO [J151 yNJOTHeHHH. B 3To#l cTaTbe Mbl paciivpsieM paHee MPOBEAEHHBIH aHa/lW3 IIepPOXOBaTbIX
KOHTAKTOB 0€3 MOKPLITUH B MJIOCKUX U OCECHMMETPHUUHBIX KOMMO3ULUUAX Ha CJAydyau MJIOCKHX U OCECHUMMET-
PHYHBIX LLIEPOXOBATBIX YIPYTMX KOHTAKTOB CO CMeLHaJbHBIMU MOKPBITUSAMU U CPAaBHHUBAeM HallK pe3yJbTaThl.
OcHoBHas 1esb paboTHl — MNOJYUHUTh TOUHblE aHAJUTHUYECKHE DPELleHUs A/ MJOCKHUX U 0CeCHMMETPHUUHBIX
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[IEPOXOBATHIX YNPYTHX KOHTAKTOB CO CIIELHAJbHBIM MOKPBITHEM W NPOAHANH3WPOBAaTh UX CBOHCTBA, TaKHe
KaK KOHTaKTHasi CBSI3HOCTb M IVIQJIKOCTb KOHTAKTHOT'O NABJIEHHsl, 110 CPABHEHHIO C TIVIAJOCTBIO MPOQHUIIS
ILIEPOXOBATOCTH TOBEPXHOCTH. JTa LeJb NOCTUTaeTCsi 3a CUeT HCIOJb30BaHUs Pa3J/ioKeHHUH pelLleHHs B
OopTOroHa/bHble MHOToYJ1eHbl UebnilleBa 1 Jlexkannpa. bBela onpenesieH AranasoH KOHTAKTHBIX MapaMeTpoB,
IJ1sT KOTOPBIX KOHTAKThl OJHOCBSI3HBI.

KuaioueBble cjoBa: MJOCKHE U OCECHMMETPHUYHbIE KOHTAKTHI C [IEPOXOBATHIM MOKPLITHEM, OPTOrOHAJbHBIE
MHorousieHbl UeObileBa U JlexxaHapa, CXOIMMOCTb PSIZIOB U pellieHHe, ONHOCBSI3Hble KOHTAKTHI C [1€POXOBATHIM
MOKPBLITHEM

Haa untuposanusi: Kudish I. 1. Connectivity in a rough plane and axially symmetric contacts with a
special coating [Kyouw H. H. CoenuHeHue B L1€pOXOBATOH MJIOCKOCTH H OCECHMMETPUUHBIX KOHTAKTaX CO
crienuabHbIM nokpeitheM| // MsBectust CapatoBeckoro yHuBepceutera. Hosasi cepus. Cepusi: MaremaTuka.
Mexanuka. Uudopmartuka. 2024. T. 24, o, 1. C. 63-70. https://doi.org/10.18500/1816-9791-2024-24-1-
63-70, EDN: QACBVA
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Introduction

The studies of elastic rough contacts have a long history. A number of analytical and semi-
analytical models using various assumptions (such as wavy surfaces, partial contact, periodic and
random surface profiles) have been proposed [1-6], including models with adhesion [7-9] and
numerical studies [10]. In [11], the authors analyzed analytically rough contacts with roughness
described by the Weierstrass function, which is continuous everywhere but not differentiable
anywhere. This analysis led to the conclusion that, under such an assumption, a rough contact is
always multi-connected, i.e. it has a series of places where contact pressure is positive (actual
contact takes place) and a series of areas where contact surfaces are apart from each other, i.e.
pressure is zero. In all these studies, the elastic solids were assumed to be made of a homogeneous
elastic material, and no coatings of any kind were considered.

That brought to the forefront two interconnected questions about solids made of homogeneous
elastic material and elastic solids with coatings: (a) What would be a reasonable assumption about
the smoothness of rough surfaces? and (b) Is it possible to get singly connected rough contacts?
In [12-14], we see the first attempts to answer both of these questions for contacts without
coatings and show how they are interconnected. In [12], besides theoretical analysis, some
experimental studies of real ground surfaces using optical and electron force microscopes were
performed. The connectivity of real rough surfaces has certain serious practical consequences
such as leakage through the gaps between surface asperities in contact sealing lubricated spaces.
Therefore, besides a purely theoretical interest in the issue of rough contact connectivity, there is
also a practical one.

The main goal of this paper is to extend the findings of [12-14] on the cases of plane and
axially symmetric rough contacts with special coatings. In other words, it is to analyze the
connectivity in a contact of rough surface and to analyze the dependence on the smoothness of
the roughness profile and connectivity. In the process, the exact solutions of the plane and axially
symmetric problems for rough elastic contact with special coatings with the help of Chebyshev
and Legendre orthogonal polynomials.

1. Formulation of the problem for rough plane contacts with a coating

Let us assume that a rigid infinite in the y direction punch with the bottom half-width a is
indented in a coated half-plane made of a homogeneous elastic material with elastic modulus E
and Poisson’s ratio v (see Figure).

Let us assume that the coating is thin and its vertical displacement is represented by the
Winkler — Fuss relationship with the coefficient proportionality dependent on the distance from the
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contact center, i.e. w.(z) = A\/1—22/a’p(x),
where w.(z) is the vertical displacement of the
thin coating subjected to pressure p(z), x is the
coordinate of the point in the contact, A is a
constant nonnegative coefficient proportionality.
The coordinate system is introduced in such a way
that the z-axis is directed upward, the y-axis is
directed along the punch length, and the z-axis
is directed along the punch contact with the hali-
plane. The punch bottom texture is described by a
continuous function z = f(x). It is assumed that
the contact is frictionless. The load applied to the
punch is directed along the negative z-axis and is
equal to P. In this classical formulation for singly ~ Figure. The general view of a rigid punch
connected contacts the problem equations are as  indented in an elastic hali-plane with a special

follows [15] coating
2 1 _ 2 a a
A 1—x2/a2p(x)—|—(WEV)/p(t)ln‘afint—é—f(x), /p(:):)dac—P, (1)

where the contact pressure p(z) and the rigid vertical displacement of the punch ¢ caused by the
applied load P are unknown and need to be determined.

2. Analysis of the plane problem

Let us use for solution of the formulated problem expansions in series with respect to the
Chebyshev orthogonal polynomials 7;,(x) of the first kind [16]. Specifically, let us assume that

flz)=wfolz Zan n(*)7

foaxdm /fo B
) N n—1,2,...,
V1—22 1—:r2

where coefficients «,, are known. Here w is a dimensionless constant characterizing the overall
height of the asperity profile described by function f(z) while fo(z) describes the nominal
roughness profile.

We will need to use the following relationships [17]

(2)

1

1
1/ln 1 dy =1n2, 1/ ! Tnly)dy lTn(ac), n=12,... 3)
v
1

[z —y|\/1—y2 lz—y|[\/1—¢y2 n

The solution to Problem (1) will be searched in the form of series, i.e.

Zﬁn JTQ)/&? (4)

where coefficients ,, n = 0,1,..., are unknown and need to be determined. Substituting (4)
into equations (1) and taking into account the orthogonality of 7, (x), n =0,1,..., on interval
—1 < x < 1 one obtains

AiﬁnTn (5)+ wa{ﬁolnuiﬁ:m (Z)} _
n=0 1
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zé—wzooznTn(z>, |z |< a, Bozi. (5)

From these equations, it is easy to find that

P 1—v? 21 —12)a] ™t
5:wa0—|—[)\+21n2 Va], an0:|:>\+(l/)a:| 7
Ta E

o0 (6)
1 P
p(ac):m{m—w;ananoTn (Z)}, |.’L"<CL

o0
Due to the fact that for A > 0 the series >  anano converges absolutely while the series

n=1
o)

anomoTy (£) converges absolutely and uniformly (remember that | T, (£) [< 1 for |z |< a) if
n=1

oo
the series > «, converges absolutely. For the latter to take place it is sufficient to assume that
n=1

an—0<1>, y>1, n— oo (7)
nYy

Moreover, the higher the value of v the more differentiable are functions f(x) and p(x) (see [12]).

For the pressure function p(x) from (6) to be nonnegative in the entire contact region it is
sufficient for the following inequality

P o0

ananoTy (g) >0, |zl|<a, (8)

n=1

— —w
ma

to be valid. Due to the fact that | 7),(x) |< 1, n=0,1,..., for | z |< 1 for this inequality to be
true it is sufficient that

P oo
E—wZ\anyan@o. 9)
n=1
Therefore, due to the convergence of the series in (9) there exists a finite positive number wy
that for any w from the interval

—1
P o
0<w<w0:m{2\anano} , (10)
n=1

the distribution of contact pressure p(z) is nonnegative in the entire contact region. For the strict
positivity of p(x) it is sufficient to require that 0 < w < wy.

Using the exact solutions (6) and (10) it is easy to calculate contact pressure p(z) and the
range of the parameter w for which the contact pressure is nonnegative in the contact region. As
it was shown in [12-14] by a series of measurements of real ground (rough) steel surfaces on an
optical profiler profiler and an electronic force microscope, theoretically, the real rough surfaces
are described by not just continuous but smooth distribution functions. The differentiability of
pressure p(z) from (6) for A > 0, 0 < w < wp, and | z |< a is the same as the differentiability of

/

o0
the roughness distribution f(x) for | z |< a as the convergence of the series > | ay, | auno and
n=1

o0
the series Y | ay, | for f(x) are the same. The case of A =0 is analyzed in [12].
n=1
[t is interesting to note that the behavior of p(x) near the contact boundaries x = +a in

the present problem is very different from the behavior of p(z) in the plane contact problem
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with a coating which normal displacement w.(z) subjected to pressure p(x) is described by the
relationship w.(x) = Ap(z), where X is a constant nonnegative coefficient proportionality [15].
Specifically, in the present problem p(z) — 400 as r — *a while in [15] p(z) — constant as
r — +a. This behavior of p(x) in our problem becomes obvious from the asymptotically valid

solution p(x) = %% +...for A>1.
3. Formulation of the problem for rough axially symmetric contacts
with a coating

Let us consider an axially symmetric rigid punch of radius a which is indented in a coated
half-space made of a homogeneous elastic material with elastic modulus £ and Poisson’s ratio
v. Let us assume that the coating is thin and its vertical displacement is represented by the
Winkler-Fuss relationship with the coefficient proportionality dependent on the distance from
the contact center, i.e. w.(r) = A\y/1 — 12 /a?p(r), where w,(r) is the vertical displacement of the
thin coating subjected to pressure p(r), r is the radial distance from the contact center, A is a
constant nonnegative coefficient proportionality. The coordinate system is introduced in such
a way that the z-axis is directed upward along the punch axis while in the zy-plane a polar
coordinate system with radial variable » = y/22 4+ y2 is introduced. The contact arrangement
is similar to the one shown in Figure. The punch bottom texture is described by a continuous
function z = f(r). It is assumed that the contact is frictionless. The load applied to the punch
is directed along the negative z-axis and is equal to P. In this classical formulation for singly
connected contacts the problem equations are as follows [15]

2 2 7 2 ’ P
A\/@pmﬁ(ﬂr;) IE _’;pK<T\J/:TZ>p(p)dp—5—f(r), [rotiar =5 an
0 0

where K(-) is the full elliptic integral of the second kind [16], p(r) and ¢ are the unknown
pressure and punch rigid displacement which need to be determined.

4. Analysis of the axially symmetric problem

First, let us notice that the set of all Legendre orthogonal polynomials P, (\/ - Zi)

n=0,1,..., is complete in the functional space Ly(0,1) of all quadratically integrable functions
on the interval (0,1). The same set of functions represents the basis in the functional space
C(0,1) of all continuous functions on (0,1). Therefore, any continuous function f(r) describing
the the texture of the punch bottom can be represented in the form [16]

f(T) = WfO(T)y fO(T) = Zanp2n ( 1- 72) )
n=0

a2
1 (12)

anp = (4n+1) / fo(ar)Pyy, (\/ 1- 7“2) rdr

1—r2
0

where coefficients «,, are known. Here w is a dimensionless constant characterizing the overall
height of the asperity profile described by function f(r) while fy(r) describes the nominal
roughness profile.

Due to the convergence of this series in Ly(0,1) it also converges to our continuous function
f(r) almost everywhere (possibly, except for a set of points from (0,1) of measure zero). On the
other hand, the series for fy(r) in (12) is a power series and, therefore, within any closed region
[b,c] C (0,1) it converges absolutely and uniformly. It means that this series not only converges
to a continuous function fy(r) in (0,1) but it is also a differentiable function.

MexaHunka 67



@ WU3B. Capar. yH-T1a. HoB. cep. Cep.: Maremaruka. MexaHvka. VIngpopmatuka. 2024. T. 24, Bein. 1

We are ready to find the solution to our problem (11) using the following relationship [17]

A

Let us search for the solution of problem (11) in the form

oo P2n ( - Zi)
p(r) = bBn , (14)

n=0 — 5

where constants 3, are unknown and have to be determined from the solution.
Substituting (12) and (14) into (11) and using (13) we obtain

A" BuPon <\/1—22> 81— %) aZﬁn{Qn—l)”} p2n< 1_2;2):
n=0

o a Pn<,/1—g§> (15)
:5—wn¥0anpgn (\/1—) Zﬁn/ i ﬁ drz%.

Here, we interchanged the order of integration and summation which is legitimate for the series
in (12) being convergent uniformly in any closed interval [b,¢] C (0, a).
Using the orthogonality of polynomials P, from (14) we find

P 1—v?
= 2
0 92 ()\+ ma—r >,

P n (16)
PR IBTL:_ wa PRI :1727"'
2ma 1—2 [ (2n—1)!
“F { @)l }

Therefore, based on (14) and (16) the solution to our problem (11) has the form

-1
1— 12 1—02 [(2n — 12
2()\+27Ta 7 ), ﬁnoz{)\+27ra I [ @ } ,

1 P > r2
p(?") = \/7 27TCL2 w; an,ﬁnOPQn 1- ? .

Obviously, for A > 0 one has

Bo =

(17)

|ﬁn|< |Oén|, n=12 . (18)

oo oo
Therefore, if the series > | oy | converges then for A > 0 the series ) a,/fn0 converges
n=1 n=1

o0
absolutely and series > v, Sn0Pon ( 1-— Zi) converges absolutely and uniformly for 0 <r < a

n=1

because | P, <m> I<K1for0<r<a.

Solution (17) indicates that pressure p(r) is nonnegative if

P > [ r?
a2 _Wz:lanﬁnOPZn ( 1_a2> 20, 0<r<a (19)
n=
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Taking into account the fact that | Pa,(x) [< 1 for all 0 <z <1 [16] it becomes clear that it is
sufficient for parameter w to be small enough for the inequality

—w
2mwa?

P oo
=1

o0
to be valid. The latter always takes place if the series Y | v, | is convergent. Therefore, if (20)
n=1
is satisfied then the function of pressure p(r) is nonnegative in [0, a), and the contact is singly
connected. If in (20) we have a strict inequality then p(r) is positive in [0, a).
For A > 0 the above conclusions are certainly true if «,, satisfy (7). By the way, inequality
(7) guarantees that the series in (12) converges uniformly for 0 < r < a and, therefore converges
everywhere in this interval to a continuous function f(r). In other words, if «,, satisfy (7) then
there exists such a finite positive number wqg that for

1
P > 1—22[(2n— 1172
0<w<u)o_27m2/21\04n’5n0, Bro = {/\+27Ta i3 [( (2n)!!) ] } , (21)

the function of pressure p(r) is positive in the entire contact region 0 < r < a.

Using the exact solution (17) and (21) it is easy to calculate contact pressure p(r) and the
range of the parameter w for which the contact pressure is nonnegative in the contact region.
The differentiability of pressure p(r) from (17) for A > 0, 0 < w < wp, and 0 < 7 < a is the
same as the differentiability of the roughness distribution f(r ) due to the fact that the series

Z | an | Bno converges exactly the same way as the series Z | @, | of the absolute values

of the coefficients ay, of the series for f(r). With respect to the differentiability of real ground
surfaces, please see [12]. The case of A =0 is analyzed in [14].

[t is interesting to note that the behavior of p(r) near the contact boundary in the present
problem is very different from the behavior of p(r) in the axially symmetric contact problem
with a coating which normal displacement w.(r) subjected to pressure p(r) is described by the
relationship w.(r) = Ap(r), where X is a constant nonnegative coefficient proportionality [15].
Specifically, in the present problem p(r) — +oo as r — a while in [15] p(r) — constant as
r — a. This behavior of p(r) in our problem becomes obvious from the asymptotically valid

solution p(r) = L 2= for x> 1.

1-72/a?

Closure

A quantitative and qualitative analysis of plane and axially symmetric frictionless contacts
with special coatings has been proposed. The exact solutions of the problems in series are
obtained. In both plane and axially symmetric cases of rough elastic contacts with coatings the
ranges of contact parameters for which contacts are singly connected have been determined.
The limit of the overall roughness height wg below which it is guaranteed that the pressure
distribution is positive within the entire contact depends on the material elastic parameters,
coating property, applied load, contact size, and the nominal roughness distribution. It is clear
that as the elastic modulus E and applied load P increase while the coating coefficient A and
contact size a decrease the range of the surface roughness [0, wp] for which a singly connected
contact is possible increases.

The solutions obtained above for the cases of the plane and axially symmetric problem
formulations with fixed contact boundaries can be used for the solution of contact problems with
unknown contact boundaries (see [13]).
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