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Abstract. Recently, there appeared a significant interest in inverse spectral problems for non-local operators
arising in numerous applications. In the present work, we consider the operator with frozen argument
ly = —y"(x) + p(z)y(z) + g(x)y(a), which is a non-local perturbation of the non-self-adjoint Sturm -
Liouville operator. We study the inverse problem of recovering the potential ¢ € Lo(0,7) by the spectrum
when the coefficient p € Lo(0,7) is known. While the previous works were focused only on the case p =0,
here we investigate the more difficult non-self-adjoint case, which requires consideration of eigenvalues
multiplicities. We develop an approach based on the relation between the characteristic function and the
coefficients {&,},>1 of the potential ¢ by a certain basis. We obtain necessary and sufficient conditions
on the spectrum being asymptotic formulae of a special form. They yield that a part of the spectrum
does not depend on g, i.e. it is uninformative. For the unique solvability of the inverse problem, one
should supplement the spectrum with a part of the coefficients &,,, being the minimal additional data. For
the inverse problem by the spectrum and the additional data, we obtain a uniqueness theorem and an
algorithm.
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AnHoTanmsa. B nocienHee BpeMsi BO3HHK 3HAUUTEJbHBIE HHTepeC K OOPATHBIM CIEKTPaJbHBIM 3aJauaM
IJIs1 HeJIOKAJIbHBIX OTepaTopoB, BO3HHUKAMOIINX BO MHOTHX INPUJIOXKeHHsAX. B Hacrosiel paboTe paccmaTpu-
BAeTCs OMEepaTop ¢ 3aMOpoKeHHbIM aprymenToM ly = —y”(x) 4+ p(x)y(x) + q(x)y(a), KoTOpHIH siBISIETCS
HeJIOKa/bHbIM BO3MYILIeHHeM HecaMmocornpsixkeHHoro onepartopa Ultypma — JIluysuans. Hcenenyercs o6paTtHas
3afaua BOCCTAHOBJEHHs noteHuuana g € Lo(0,7) no crekTpy npu U3BecTHOM Koadouuuente p € La(0, 7).
B To Bpems Kak mpeablaylive padoThl ObLIM COCPENOTOUEHBI TOJNBKO Ha caydae p = 0, 31ech UCCAeNyeTCs
6oJsiee CJIOKHBIH HecaMOCOMNPSIKEHHBIH caydyai, TpebyloLui yyeta KpaTHOCTeH COOCTBEHHBIX 3HaueHHH. Mbl
pa3BuUBaeM IOAXOM, OCHOBAaHHBIH Ha CBSI3U MeXIy XapaKTepUCTHUYeCKOH (PyHKUHeH U Ko3(p(pHLHeHTaMU
{&€n}n>1 moOTeHUHANA ¢ N0 HeKoTOpoMy Gasucy. [losyueHbl HeoOXOOMMblE U HOCTATOYHBIE YCJIOBHS AJIS
CIIEKTPa, KOTOpBIe SBJISAIOTCA aCUMIITOTHYECKUMHU (hopMysamu ocoboro Buaa. M3 HUX ciefyeT, UTO 4acTb
CTIeKTpa He 3aBUCHT OT ¢, T.e. siBjseTcs HenH(OopMaTUBHOH. [/ OAHO3HAYHOH pas3pelminMocTH 06paTHOH
3a/layl KpoMe CreKTpa HeoOXOAMMO 3aaTh 4acTb KOI((PULHUEHTOB &, KOTOPbIe ABJSAIOTCS MUHUMAJbHBIMU
JOTIONIHUTEIbHBIMH NaHHBIMU. [/ 06paTHOH 3ama4M IO CNEKTPY U JOMOJHUTENbHBIM NAaHHBIM TOJyUeHbI
TeopeMa eIUHCTBEHHOCTH U aJITOPUTM.

KaroueBble cioBa: o6paTHblE CIeKTpasbHble 3a1aud, 3aMOPOXKEHHBIH aprymeHT, omepartopsl LlTypma -
JInyBUNIsA, HeJIOKabHbBIE ONEPATOPhl, HEOOXOMHUMbIE H JIOCTATOUYHbIE YCJIOBHSA
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Introduction

Inverse spectral problems consist of recovering operators from their spectral characteristics.
The classical results in this field were obtained for the differential operators [1-5], which are
local. Recently, in connection with numerous applications, there appeared a considerable interest
in inverse problems for non-local operators [6—12], and, in particular, for the operators with
a frozen argument [13-25]. Their studying is complicated by the fact that non-local operators
require the development of non-standard methods.

In this paper, we study the recovery of a complex-valued potential ¢ € L2(0,7) by the
spectrum {\,, },>1 of the boundary value problem

ly == —y"(x) + p(x)y(z) + y(a)g(z) = My(x), € (0,7), (1)
y'(0) =y P(r) =0, «o,Be{0,1}, (2)

where a € [0,7] and p € Ly(0,7) is complex-valued. Operators ly are usually called Sturm -
Liouville operators with frozen argument. They have a close relation to the operators with integral
boundary conditions [8,12,26-28], which arise in studying diffusion and heating processes and in
the theory of elasticity, see [29-32]. In connection with this, in [33], some spectral properties
of the operator ly were established in the case of periodic boundary conditions. However, the
mentioned work does not address an inverse spectral problem.

The previous studies of inverse spectral problems for Sturm — Liouville operators with frozen
argument [13-25] were focused only on the case p = 0. In this particular case, a comprehensive
study of recovering ¢ by the spectrum required a series of works [15-18,20,22,25]. The most
general approach to the operator with frozen argument was developed in [22], which allowed us
to obtain necessary and sufficient conditions on the spectrum and, afterward, a uniform stability
of the inverse problem [25].
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In [23], there was suggested another approach to the operator with frozen argument within
the framework of perturbation theory. According to it, operator [y could be treated as a one-
dimensional perturbation of the Sturm - Liouville operator Ay := —y” + p(z)y. However, for
studying the spectral properties of ly, this approach needs the selfadjointness of the operator
A. For this reason, it is inapplicable to the case of complex-valued p considered here, since the
unperturbed operator A is non-self-adjoint.

Here, we develop an approach to the general situation of arbitrary p € Ly(0,7), relying
on some ideas of [22]. We significantly extend the mentioned ideas to take into account the
non-self-adjointness of the unperturbed operator, which requires consideration of eigenvalues
multiplicities.

The main results of the paper consist in necessary and sufficient conditions on the spectrum, a
uniqueness theorem, and an algorithm. As in the previous work [22], the necessary and sufficient
conditions are asymptotic formulae of a special form. They give the so-called degeneration
condition that some part of the eigenvalues is uninformative, i.e. it does not depend on gq.
However, compared to [22], the non-self-adjointness of the unperturbed operator leads to a new
effect that the degeneration condition includes a restriction on the minimal possible multiplicity
of each uninformative eigenvalue.

The paper is organized as follows. In Section 1, we introduce necessary objects and
provide auxiliary statements. As well we obtain a characteristic function of boundary value
problems (1), (2), and a main equation of the inverse problem. In Section 2, by necessity, we
establish the conditions on the spectrum. The main results and their proofs are given in Section 3.

1. Preliminaries. The main equation of the inverse problem

First, we consider the unperturbed boundary value problem for the classical Sturm — Liouville
equation
—y"(z) + p(@)y(z) = Ay(z), =« € (0,m), (3)
with boundary conditions (2). Denote by S, (z, A) and C,(x, \) the solutions of equation (3) under
the initial conditions

Cola,\) =1, Cl(a,\) =0, Su(a,\) =0, S.(a,\) =1;

here and below the prime symbol stands for the derivative with respect to the first argument.

Let us agree that f: f(t)dt is understood as — [;" f(t)dt when b < a. For z € [0,n], using
transformation operators (see, e.g. [4]), we obtain the followmg representations:

Sulw, A) = sinp(z —a)  cos p(x2 —a) walz) + / Koa(a,t) Cos ,0(7;— a) n
p p a p
, sin p(x — a) v sin p(t — a)
S, (x, ) = cosp(x —a) + 7@;(36) + [ Koz, t)f dt,
: (4)
— t—
Co(z,\) =cosp(x —a) + ——— sinple — a) / Kq3(x s1n sinp(t — a) dt,
p p
Cl(z,\) = —psinp(z — a) + cos p(x — a)wa(x) + / Kq4(z,t) cos p(t — a)dt,
where p? = )\ and w,(z) = % “p . In (4), for each fixed z, there determined K, ;(z,-) €

Ehmm)de”ehmwF':L4

Consider the entire function Ag(\) = C{(0,\)S (m,A) — S{(0,\)CP (x, ), wherein
y© =y and y") := ¢/. It is easy to see that Ag is a characteristic function of unperturbed
boundary value problem (2), (3), i.e. a number u,, is its eigenvalue if and only if Ag(u,) = 0. By
{tin}n>1 we denote the spectrum of (2), (3), being the sequence of the eigenvalues taken with
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the account of algebraic multiplicities. The following asymptotics are known (see [4]):

n /"
atB w sy, wim [ a0t {mleich 6
0

=02 0,=n—
Hn n Un =N 2 ™m n 2

By m,, we denote multiplicity of the eigenvalue pu,,. By asymptotics (5), for a sufficiently large
n, we have m,, = 1. Without loss of generality, we assume that equal values in the spectrum
follow each other. Then, we have

fn = fptl = -+ = fntm,—1, NES, S:={n=>2:pu, # pup—1}U{1}.

The index n € S corresponds to the unique elements in {un}n>1, while for n € S and
v € 0,m, — 1, the index kK = n + v runs through N.

Now, we are ready to study boundary value problems (1) and (2). Introduce the solutions
S(z,A) and C(z, A) of equation (1) under the initial conditions

S(a,\) =0, S'(a,\)=1, C(a,\)=1, C'(a,)\)=0.

Any other solution of (1) is a linear combination of S(z,\) and C(z, A). It is easy to see that
SN = Sl ), CleX) = Cala )+ [ Wlast Na(o)do )

where W (x,t,\) := Co(t, \)Sa(z, \) — Co(x, \)Sa(t, A). We introduce the entire function
AN = 90,08 (xr, X) = S0, \)CP) (x, A). (7)

Then, A(\) is a characteristic function of boundary value problem (1), (2), while {\,},>1 is a
sequence of its zeroes taken with the account of multiplicities.
Substituting (6) into (7), we obtain

A = Ag(N) — SB)(x, ) / W@ (0,40 g(t) dt — S0, \) / "Wt N gty d. (8)
0 a

Following the approach in [22], we should substitute into (8) the values A = pu,, being the
zeroes of the main part Ag(A). In the paper [22] corresponding to the case p = 0, we had

Ly, = (n — O‘TH’))2, being simple eigenvalues. Here, we have to take into account that u, may be
multiple. For each n € S, we differentiate both parts of formula (8) v =0, m,, — 1 times and put
A = . Since
8V
o
in A = u,, we obtain

(00,05 (m, 3)] = 2[5

a a T oo (07A)Céﬁ)(ﬂ'7)\)]7 nes, V:W, (9)

™ (v)
AV(\) = [5}1@ (m, A)/ g(t, Nq(t) dt] . A=jm, neS, v=0,my, —1, (10)
0

where g(t, \) := —W(®)(0,¢, \). One can see that g(t, \) = So(x, \) if @ = 0, and g(t, \) = —Co(z, \)
if @ = 1. Moreover, g/®(m, \) = Ag(N).
For n € S and v = 0, m,, — 1, we introduce

ni-~ a"séﬂ)(w,A)
vl ON

nl—a ﬁm"_y_lg(t, )\)
mp —v—1)  9AP—v—l

n4v =

s Intv (t) = (

)\:,U/n A:“n

Note that a; and g are the objects constructed by unperturbed boundary value problems (2), (3),
and they are known. Formulae (4) and (5) yield that ax = O(1) and {gx(¢)}x>1 is an almost
normalized system. At the same time, {gx(¢)}r>1 is constructed from eigen- and associated
functions of the operator Ay = —y” + p(x)y considered under strongly regular conditions (2). For
the mentioned reasons, the following proposition holds (see, e.g., [34,35]).
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Proposition 1. The functional sequence {g,(t)}n>1 is a Riesz basis in Ls(0, ).

Applying the general Leibniz rule in (10), we get

o s A (i - _
n® BV(!M) = Zanﬂ/fngnﬂnnflfm nes, v=0m,—1, (11)
n=0
where &, := [ gr(t)q(t)dt. Further, we consider (11) as an equation with respect to the
coefficients {&,},>1. From Proposition 1 it follows that {&,}n>1 € ¢2 and its knowledge allows

one to recover ¢ uniquely. Formula (11) is called the main equation of the inverse problem.

2. Necessary conditions

In this section, we obtain necessary conditions on the spectrum {\,},>1, which consists of
asymptotic formulae (21). In the next section, we prove that they are sufficient conditions as
well.

Remind that A\, = p2 and p, = 62. Without loss of generality, we assume that argp,,
argf, € [—3,5). We start by obtaining the weakest asymptotics for p,.

Lemma 1. The following asymptotics holds: p, = 0, +o(1), n > 1.

Proof. For definiteness, we provide computations in the case « =1 and 8 = 0 (the other cases
are proceeded analogously). By asymptotics (9), it is sufficient to prove that p, =n — % +o(1).
For A = p?, we consider A()) as an entire function of p. Then, {pn}n>1 U {—pn}n>1 is the set of
all its zeroes.

Denote 7 = |Im p|. Using the corresponding formulae in (4), for p — oo, we obtain

T(m—1)
W'(0,¢,N) = =Co(t,\) =0 (e™), W(m,t,A) =—Sx(t,\) =0 (6 p ) :

e‘r(ﬂfa)

Su(m.2) = 0 ( ) » S0 =0(), o) = =Co(m,A) = —cospr + 0 <e,o> |

Substituting these relations into (8), we get
A(N) =Ag(A) + O <€p> = cos pm + O <€p> . (12)
For any § € (0, %), we have the following estimate with C5 > 0 (see [4]):

|cospmr| > Cse™, peGs:= {z e C:

zn+;‘>5,n€Z}. (13)

Then, by (12), there exists N5 € N such that | cos pr| > | cos pr — A(p?)| as soon as p € G5 and
|p| > Ns. Applying Rouche’s theorem, we arrive at that in the circle |p| < Nj, the functions
cos prr and A(p?) have the same number of zeroes. Analogously, in each circle |[p —n+ 3| < 4,
where n € Z is such that [n — 1| > N, there is exactly one zero of A(p?). Taking into account
that A(p?) and cos pr are even functions of p, and that & can be arbitrarily small, we arrive at
the needed asymptotics. O
Further, we clarify the obtained in Lemma 1 necessary conditions on the spectrum.

Theorem 1. /. Let K € N be such that for n > K, all m, = 1. Then, the [ollowing
asymptotics holds:
An = fn + apitp, 1 2 K, {%n}n2K € ly. (14)

Il. For n € S, denote k, = min(my,r,), where ry, is a multiplicity of A = p, as a zero of the
entire function Séﬁ) (m, X). Then, there exists such numeration of {\,}n>1 that

An:)\n—&—l:”':/\n—i-kn—lzlinv nesSs. (15)
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Proof. 1. By Lemma 1, we have p,, = 6, + n,, where 1, = o(1). To prove (14), we substitute
A = p2 into (8) and, using the Taylor series, obtain asymptotics for 7,, where n > K.

For definiteness, consider the case @« = 1 and 8 = 0 (the other cases are proceeded
analogously). Since Ag()\) = —Co(m, \), substituting A\ = p2 into the corresponding formula
in (4), applying trigonometric formulae along with asymptotics (5) and 7, = o(1), we get

sin 0,,t

Ag(An) = —cosb,m — 93 sin @, ™ — / Kos3(m,t)
0

n

dt + (=1)" g, + o(ny).

n

In this formula, the first three summands compose Ag(u,) = 0, and we arrive at
Aop(An) = 1w ((=1)"" + 0(1)). (16)

Proceeding analogously, based on (4), we also obtain the following asymptotics:
Salt, An) = Sa(t, pin) + O™ ), Sa(t, An) = So(t, pn) + O (), }

Ca(t, M) = Cul(t, pn) + O(1n), Cclz(t7 An) = C(;(t, pin) + O(nmy,)

(17)

uniformly on ¢ € [0, 7]. Using (17), we have
Ay = So(m, An) /a W’ (0,t, \n)q(t) dt =
0
= (sutm) +0 (2)) (= [ sut0at e+ o) ).

Since gn(t) = —cosfpt + O(n~1), by the Riemann - Lebesgue lemma, [ g,(t)q(t)dt = o(1).
Using also that S, (7, i1,) = O(n™!), we obtain

Ay = —Su(ms i) /O " gn(®)a(t) dt + o). (18)

Analogously, we have

By, = 84,(0,\n) / W (m,t, An)a(t) dt = S0, pin) / W (m, t, pin)q(t) dt + o(n).
Relation (9) yields that S/ (0, pn)W (¢, pin) = —Sa(m, pin)gn(t), and
By = — S, ) / on(®)q(t) dt + o(n). (19)

Combining (16), (18), and (19) with (8) in A = p2, we obtain

0= ((_1)n7T + 0(1))7771 + S<7T’:U’TL)§TL7 {En}n}l S £2~

For n > K, the value 7, is the unique solution of this equation, which leads to 7, = a,v,n"*
with {v,}n>k € €2, and to (14).
II. From the definition, it follows that

Gp = Gpt+1 = ... = Gptk,—1 = 0.

Then, by formula (11), py, is a zero of A(X) of multiplicity not less than k,,. This means that u,
occurs in the spectrum {\,},>1 at least &, times, and (15) holds up to a numeration. O
In what follows, we can assume that the numeration of {\,},>1 satisfies (15). Denote

QOQ={n+v:nesS, v=0k,—1}, Q=N\Q. (20)
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Formula (15) yields that the part of the spectrum {\,},cq does not depend on ¢, i.e. we have

the degeneration condition. Each unique eigenvalue \,, = p,, in this part occurs k,, times, which

restricts its multiplicity to be not less than k,,. Note that (15) follows from (14) when n > K

since k, < 1. In [22], condition (15) was not required because, for p = 0, we can take K = 1.
Now, we unify conditions (14) and (15) into one formula. Introduce the values

antv, V= Oapn - 1a
bpty = pn :=max(1l,k,), nesS.
17 V=Dn,Mp — 17

Then, formulae (14) and (15) are particular cases of the following relation:
An = n + bpin, n =1, {%n}n>1 € 4. (21)

[t differs from (14) and (15) only by a finite number of formulae forn = k+v < K, k € S,
v € kp,m, —1 with b, # 0, being non-restrictive. For this reason, (21) is equivalent to (14)
unified with (15). In particular, n € Q if and only if b, = 0.

Note that b, = O(1), then the following asymptotics is weaker than (21):

)\n:pfl, pn:n—L—Ff-l-;, {vn}tnz1 € Lo, (22)

By the standard approach involving Hadamard’s factorization theorem (see, e.g., [4]), one can
prove that

2
A — A (k—#) k>1lora+f <2,
) Cp =

Ch 1, k=1, a=p8=1

(23)

ORI |
k=1

Thus, by the spectrum we can uniquely reconstruct the characteristic function A(\).

3. Main results

First, we obtain the necessary and sufficient conditions on the spectrum.

Theorem 2. For an arbitrary sequence {\,}n>1 of complex numbers to be the spectrum
of boundary value problem (1), (2) with some q € Lo(0,7), it is necessary and sufficient to
satisfy (21).

For the proof, we need the following lemma.

Lemma 2. Let A(\) be constructed via (23), where arbitrary values {\,}n>1 satisfy
asymptotics (22). Then, the following representation holds:

p*e (Sinm - Cosfﬂw/w <SPy (1) dt) . a=8,
p p o P

. ™ gin ot
(=1)* (cos pT + Smppﬂw —|—/ sn;p W (t) dt) , aF B,
0

AN = (24)

where W € Lo(0, ).

For a = 8 = 0, the statement of the lemma easily follows from Lemma 3.3 in [6] after
integration in parts. For the other combinations of « and 3, the needed statements are proved by
analogous computations.

Proof of Theorem 2. The necessity part was proved in the previous section. Let us prove the
sufficiency part. Construct the function A(X) via formula (23) using the given numbers {A, }n>1.
Condition (21) yields asymptotics (22), and, by Lemma 2, A()\) has the form (24).
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Now, we should find a function ¢ such that its coelficients & = [ q(t)gr(t) dt satisfy (11).
For every n € S, relation (11) can be considered as a system of m,, linear equations with respect
to the vector [£,4,]7 "

an§n+mn—1 = n27a7ﬁA(Mn)7

A (un,
an£n+mn—2 + an+1£n+mn—1 — ’I’L2_a_6¢,
1! (25)
2 A D (n)

(my, — 1)!

By (21), we have A(u,) = A'(uy) = ... = A%=D(u,) = 0. This along with (15) yields that
the first k, rows in the system (25) turn trivial identities and that arbitrary values of &,4,,
v =0k, — 1, satisly this system. If k, < m,, then a,,x, # 0, and the rest &,,, are uniquely
determined by subsequent application of the following formulae:

angn + anJrlfnJrl +...+ anernflfnernfl =N

AFn) (1)
2 a—0 Hn
€n+mn71 Uit ]€ | )
- 26)
1 Akntr=1 () . -
én Mp—V — n2—o¢—ﬂ - An+k, gn mp—v , V= 25 mnp — kn

Remind that for a sufficiently large n > K, we have m,, =1, and &, either can be arbitrary (if
kn, = 1) or it is computed via the first formula in (26) (if k, = 0).

Thus, we arrive at that the part of the coefficients {&.}, g is uniquely determined by
{An}n>1, while {&x}req can be arbitrary (for the definition of € and Q, see (20)). Applying
the scheme from the proof of Theorem 1 in [22], using representation (24), we obtain that
{n?=PA(un)ay '}, cons € l2 and {&},cq € Co. Choose arbitrary coefficients {&;}req € lo.
Then, there exists ¢ € La(0,7) such that its coefficients with respect to the basis {gx(¢)}r>1 are

{&k ezt
Consider boundary value problems (1) and (2) with such potential ¢. Let A,(\) be the

characteristic function of this boundary value problem. Then, by construction,

AN — AW

F = Ap(N)

is an entire function. Representations (8) and (24) along with (4) yield asymptotics
AN — AN =0 (paw*%”) R | (27)

Using (4), we also arrive at

e (COSp?T—i—O

. ) o+ 5,

). a-s

5, analogously to (13), one can prove

ﬂb‘
\_/

5
Consider arbitrary ¢ € (0, 7). For a sulficiently large [A| >
that

p2el (sm pm+ O

N——~

=

|1Ao(N)| = Cslp|*TPle™, peGs= {z e C: ‘z—n—k a;ﬁ >0, nEZ}, (28)

where Cs > 0. Using (27) and (28), we arrive at F'(\) = o(1) in G. By the maximum modulus
principle and Liouville’s theorem, F'(A) = 0. Thus, the function A()) is the characteristic function
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of the boundary value problem (1), (2) with the considered potential ¢, and {\,},>1 is its
spectrum. O

From the proof of Theorem 2, it follows that the potentials ¢ corresponding to the same
spectrum have the same coefficients {fn}neﬁ’ while for n € ), the coefficients &, may differ.
At the same time, by Proposition 1, the mapping g — {&,}n>1 is a one-to-one correspondence
between Lo(0,7) and ¢5. Thus, for a fixed spectrum {\,},>1, one can construct the set of all
iso-spectral potentials ¢ varying {&,}neq € 2 or find a unique ¢ setting additionally {&,}neq € lo.
In the latter case, we obtain a uniqueness theorem.

Theorem 3. Let {S\n}@l be the spectrum of boundary value problem (1), (2) with a potential
qe€ L2(077T>J while fn = foﬁ q(t)gn(t) dt, n € Q. [f {An}n21 = {/\n}n21 and gn = fn fOI’ n € €,
then q = q.

Since the proof of Theorem 2 is constructive, we have the following algorithm for recovering
q given {An}n>1 and {&ntneq.

Algorithm 1. To recover the potential g, one should:

1. Construct A(\) via formula (23).

2. For n € §, by formula (26), compute the unknown coefficients &,4%,,---,&ntm,—1-
3. Find ¢ = > 07 &n fn, Where {f}n>1 is the basis biorthonormal to {g,}n>1 in L2(0, 7).
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