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In this article the Sturm — Liouville boundary value problem on the graph I" of a special structure is considered.
The graph T" has m edges, joined at one common vertex, and m vertices of degree 1. The boundary
value problem is set by the Sturm - Liouville differential expression with real-valued potentials, the Dirichlet
boundary conditions, and the standard matching conditions. This problem has a countable set of eigenvalues.
We consider the so-called weight numbers, being the residues of the diagonal elements of the Weyl matrix
in the eigenvalues. These elements are meromorphic functions with simple poles which can be only the
eigenvalues. We note that the considered weight numbers generalize the weight numbers of Sturm — Liouville
operators on a finite interval, equal to the reciprocals to the squared norms of eigenfunctions. These numbers
together with the eigenvalues play a role of spectral data for unique reconstruction of operators.We obtain
asymptotic formulae for the weight numbers using the contour integration, and in the case of the asymptotically
close eigenvalues the formulae are got for the sums. The formulae can be used for the analysis of inverse
spectral problems on the graphs.
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INTRODUCTION

Consider the graph I' which consists of m edges e;, m > 2, j = 1,m, joined at a
common vertex. Let the graph I' be parametrized so that z; € [0, 7] where the parameter
x; corresponds to the edge e;, the parameter x; = 0 in the boundary vertex and z; = 7
in the common vertex, j = 1,m. We call T" a star-shaped graph.

A function on the graph is a vector function

where the components
yi(x;) € WE[0,x), j = T,m.

m

y = [y ()],

are functions on the edges e; correspondingly,

We denote by ¢’ differentiation of the function g with respect to the first argument.
Consider the differential expression

ly = [—yj (z;) + a;(z;)y;(z;)]7L, (1)

Then the Sturm - Liouville boundary value problem on the graph can be written as

follows:
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ly =My, (2)

y](o) = 07 ] = 17m7 (3)
>_u;(m) =0, (4)

yi(m) = y2(m) = ... = ym(7), (5)
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where A is the spectral parameter, the equalities (3) are Dirichlet conditions, and (4)-(5)
are the standard matching conditions. In (1) the functions g;(z;) are called potentials,
qi(z;) € Lo[0,7], ¢;(x;) € R.

The differential operator L, given by the differential expression (1) and the conditions
(3)-(5), is seli-adjoint in the corresponding Hilbert space (see [1] for details).

Since the differential operators on the graphs have applications in physics, chemistry,
nano-technology, they are studied actively (see [2,3]). In the article we obtain asymp-
totic formulae for weight numbers of the problem (2)-(5) which generalize the weight
numbers on a finite interval [4, Chapter 1]. Those asymptotic formulae can be applied
for studying of inverse spectral problems for differential operators on graphs. Weight
numbers together with eigenvalues have been used for reconstruction of the potentials
of the Sturm - Liouville operators on graphs, e.g., in [5,6].

The difficult case is when the eigenvalues are asymptotically close though not mul-
tiple. The asymptotic formulae are got by using the integration over the contours, con-
taining the asymptotically close eigenvalues, in the plain of the spectral parameter.Thus,
the asymptotic formulae are obtained for the sums of the weight numbers, as it has
been done in [7] for the weight matrices for the matrix Sturm - Liouville operator.

1. PRELIMINARIES

In this section we introduce a characteristic function of the operator L, the zeros
of which coincide with the eigenvalues. We also provide auxiliary results from [8,9],
related to the eigenvalues of L.

The conditions (4)-(5) can be written as follows:

V(y) := Hy'(7) + hy(r) = 0,

where H and h are m x m matrices :

1 0 0 0 0 0
000 00 1 -1 0 0 0
H=|: f, oh=l0 1 -1 0
0 . S
000 ...00 00 0 ...1 —1

For each fixed j = 1,m let S;(z,\) and Cj(x,\) be the solutions of the Cauchy
problems

S, N) + 4 @)55(5, ) = ASy(,N), 5;(0,0) = 8(0,0) = 1 =0,
—C(x, ) + qj(2)Cj(x, \) = XCj(x, N),  C5(0,\) =1 =C5(0,)) =0.

Let the number p be such that

)\:pQ, argp € <—g,g} (6)
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The functions S;(z, ), C;(z, \) satisfy the Volterra integral equations

‘ _ sinpx “sinp(z —1t) ‘
S, 3) = L /U . 05(1),(t, \) dt, )
C;(x, \) = cos pz + / ij(t)q(t,)\)dt. 8)
0

Put 7 := Im p. One can obtain the following asymptotic formulae from (7),(8) as p — oc:

Si(z,p) = ST / el A p(a; —Y) sin pt q;(t) dt+
P 0 P
sinp(x —t) q;(t elle
[ / s )%()Smp(t—f)qg(f)smpéddeO( ¥ ) 9)
Si(x, p) = cos px + / cospe ~ 1) sin pt q;(t) dt+
0

/ / cosp xp—2t) a;(t) sin p(t — &) q;(§) sin p€ dédt + O <e|pTlm>7 10

Cj(x, p) = cos px +/

0

Tt — ) aqi(t) |T|x
+/0 /0 Smp(wpg LU i p(t — €) 45(€) cos pé ddt + O <ep3 ) S
Ci(x, p) = —psin px —i—/ cos p(z —t) cos pt q;(t) dt+
0

O eltlz
//Csp J()sinp(t—€)qj(§)COSp€d£dt+O(P > "

We introduce matrix solutions of equation (2): S(\) = diag{S;(x;,\)}j, and
C(\) = diag{Cj(z;, \) }JL,.

Every eigenvalue of problem (2)—(5) corresponds to the zero of the following char-
acteristic function A(\):

—1
sinp(z = 1) cos pt q;(t) dt+

A(N) == det V(S())). (13)

As Sj(m, A), Si(m, ) are entire functions of A, the function A()) is also entire. Recon-
structing the determinant in (13), we obtain

=> S;wAﬁswA : (14)

1 p—
jik

m
k=

Lemma 1. The number )y is an eigenvalue of problem (2)-(5) of multiplicity k if
and only if \g is a zero of characteristic function of multiplicity k.

The statement of the Lemma 1 results from the self-adjointness of L and is proved
with the same technique as in [7, Lemma 3]. From the self-adjointness of L it also
follows that the eigenvalues of the boundary problem (2)—(5) are real.

Denote w; = § [; ¢;(t)dt, f(z) = [T/Li(z —w;). Let 20, j =T, m —1 be the zeros
of f'(z), 2™ = YT 1wj/m We will mean by {k,}>, different sequences from 2.
Considering these designations, the following theorem can be formulated:

qz2 Hay4Hbir oTaen
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Theorem 1. The operator L has a countable set of the eigenvalues. The eigenvalues
can be enumerated in such way that the further formulae are satisfied:

) (4)
VAY = T (15)
nm
(m)
VA —p L 2T (16)
2 nmw

where the square root is taken according the same rule as in (6).

The formulae (15), (16) with the remainders o(1) are obtained in [1]; Theorem 1 is
proved for real-valued potentials by V. Pivovarchick [8] (see also [9]).

Remark 1. The statement of the Theorem 1 is also correct under the conditions
gj(z) € C, j=1,m, all {z(k)}:;l are distinct.

2. MAIN RESULTS

In that chapter we define and study weight numbers based on the Weyl matrix.

Let ®(\) = {¢jr(zj,\)}T}—, be the matrix solution of (2) under the conditions
{00, ) }f4zy = I, V(®) = 0. The matrix M(A) = {—¢},(0,A)}7}_, is called the
Weyl matrix and generalize the notion of the Weyl function for differential operators on
intervals (see [4]). Weyl functions and their generalizations are natural spectral char-
acteristics, often used for reconstruction of operators. A system of 2m columns of the
matrix solutions C'(\), S(A) is fundamental, and one can show, that

M) = (V(S(V)) T V(C()). (17)

In view of (17) the elements of the matrix M(\) = {My(A)}}"—, can be calculated as

/

1 m
My () = —— (N A ) |
J#k e
The elements of the matrix M (\) are meromorphic functions, and their poles may be
only zeros of the characteristic function A(\). Moreover, analogously to [7, Lemma 3],

we prove the following lemma.
Lemma 2. If the number X\ is a pole of My/(\) , this pole is simple.

Proof. Let Ay be a zero of A(X) of multiplicity b. By virtue of Theorem 1 there are
exactly b linearly independent eigenfunctions {yj}g’.:l corresponding to A\g. Denote by K
such invertible matrix that first b columns of S(Ao) K are equal to {y;}’_,.

If Y(\) = S(\)K, then S(\) = Y(A\) K1, and

M(X) = K[VY (M) V(CW)).
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[t is sufficient to prove that for any element of A(\) the number Ay can not be a pole of
order greater than 1, where A(X) = [V(Y/(A)]7'V(C(N)). I A(X) = {Aq(N)}7—,, then

Ay = 3V EA), - VA (V) VICGN), Vo1 (D), - V)]

det V(Y (X))
The number )\, is zero of the numerator of multiplicity not less then b — 1. From that
the statement of the theorem follows. O
We introduce the constants afn = Re(sj My () which are called weight numbers.
A=\

We also mean by {r,(2)}5°, different sequences of continuous functions such that

e}

max |k, (2)]* < oo,
n=1 I2I<R

where
R =2+ max |2¢].

s=1m

The main results of the paper are stated in the following two theorems.

Theorem 2. Let the eigenvalues of L be enumerated as in Theorem I, k = 1,m.

Then
N2 .
Zafn:%<m—1+%>, (19)
JEI(n)
_1y2
ok, = " 2) (2+2), (20)
mm n
where 71
I(n) = 7jL:J1 {min{s Al = )\gj)}}.

Proof. To prove the theorem, consider p,(z) = n + ni |z| < R. Substituting
s
p = pa(z) into (9)-(12), we obtain

simae =l (o 2o -gen. @)
S(m. () = (-1 (14 4. 22)
Cym o) = (-1 (1422 (23)
Ci(m, pi(z)) = M (z — Wjn + '{”T(Z)) , Win = w; + q;(2n), (24)

where g;(1) = 5 [ ¢;(t) cosit dt. We substitute (21)-(24) into (14), (18) and get

AN = s | ST = + 22 | (25)
i
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MDA = G Z H (e -+ )
S?ﬁkﬁésj#k’

Let us denote f.(2) = [[}~,(z — ©jn), 6(r) is the circle of center 0 and radius r > 0.

It can be proved that 77 = 20) 4 (1), n — oo, where {Eﬁlj)};zll are the zeros of f/(2).
If 2 € §(R), then for sufficiently large n, p?(z) runs across the simple closed contour,

which surrounds {)\53)};:11 Integrating My ()), after the substitution A\ = p2(z) we have

> abh=sn [ e

lel(n) =€5(R)

The following formula is obtained from the previous one and (25), (26):

S T, (2 — @) + 222

22 . e
Z o, = o= / Pr(2) sk gk " g 27)
The remainder M can be excluded from the denominator of (27) with Taylor expan-
m—1 " K (Z)
— > 1 if I h. Besid n?(1+-—"—2),
sion as gllnr}%H |z — 29| if n is large enough. Besides, p2(z) = ( +— )
12| < R. After the designation
S 1T, (2 =)
Grn(2) = : mf - -
5 (-2
we get
Kn
Z ap, = 2m7r . un(2)dz+ —= ] (28)
lel(n 2€6(R)

We note that 4(r) contains all {27’ } " for r > R and large n. Thus,

/ () dz = / gin(2) dz.

z€6(R) z€4(r)

The numerator of the fraction gx,(z) is a polynomial of degree m — 2 with leading
coefficient m — 1, and its denominator is a polynomial of degree m — 1 with leading
coefficient 1. For z € 6(r) there is the equality gp,(z) = 2=+ + O(r~?) , and

1

2mi
z€4(r)

Gin(2)dz=m —1+0(@ ).

As r — oo we obtain (19).
Formula (20) is proved analogously. O
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Theorem 3. Let 2\® be a zero of f( ) of multiplicity b(s) > 0, 1 < p < m.
Denote N(s) = {1 < j <m: 2 # 20}, N'(s) = {1 <j<m: 2z =29}, and
Wi(s)={1<j<m: 2 #w}. [prW(s) then

Z ol = (st + ﬁn) (29)

IEN'(s
else
O (P (30)
leEN'(s)
where
mo((s) A (8 _ .
st — H‘]fl(z wj) ‘ @s _ b(s) H]GW(s)( ])

(208 — w,)? HjeN(s)(Z(s) —20)’

and the product over empty set is understood as 1.

HjEN(s)(Z(S) — 20y’

Proof. Denote by 7 such positive number that the circle |z — 2(¥)| < r does not
contain 2, j € N(s) and 2| +r < R, r > C > 0. We call the circumference of that
circle y(s). The following analogue of the formulae (28) can be proved:

>oken, [1" =1, (2 — @)

Z oz? _ 27n2 / k#p  j#k.j#p ‘ dz+@ ‘ (31)
" 2mm?i Hﬁ}l(z—éé”) n

We designate
>kt [17=1, (2 —wa)

F,(z) = k#p _ JF#k.37#p ‘
’ [T (2 = 29)
As w; — ©j, = K, and the coefficients of f'(z), f/(z) depend on {w;}7L;, {@jn}j,
polynomially, we have

ZIZ;AI 1" D (2 — @jn)
L_Jiriip — F,(2) = kn(2), (32)
Mgy =
where z € y(s). We integrate the fraction F,(z).
First we consider b(s) > 1. Then 2 is a zero of f(z) of multiplicity b(s) + 1

(see [10, section 4.3]), and cardinality of W(s) is m — b(s) — 1. In the case when
2

p € W(s) the function F,(z) has no pole inside v(s), and o, = L/@n, what is the same
mi
s (29). If p ¢ W(s), then

b(s)(z — 2t))¥e)—1 HjeW(s)(Z —wj)+(z—2 ()l )ZkeW(s H]GW(S (z —wj)

(Z — Z(s))b(s) HjEN(s)( (J))

HjeW(s)(Z(s) — wj)

. (33)
e (200 — 200

/ F,(2)dz = b(s)
Formula (30) follows from (31)—(33).
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Further, let b(s) = 1. When 2(*) is a zero of f(z), computations are the same as in
the case b(s) > 1. So we assume f(2(*)) # 0, and consequently p € W(s). Rewriting

F,(z) as
(@ N e L f(2)
R = (5) v = = - i
and integrating over ~y(s), we obtain (30). O
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YK 517.984

ACUMNTOTUYECKWNE ©OPMYJIbl /19 BECOBbIX YACEN
KPAEBOW 3AZLAYM WTYPMA - INYBUNNS HA TPADE-3BE3IE

M. A. KysHeu,0Ba

KysHeuoBa Mapust AnapeeBHa, cTyneHT, CapatoBckuii HauWOHanbHbIA UCCNenoBaTENbCKIA TOCynap-
CTBEHHbI yHMBepcuTeT umeHn H. I YepHbiwesckoro, 410012, Poccusi, Capatos, ActpaxaHckasi, 83,
mk680970 @ gmail.com

B crarbe nccnefosaHa kpaesas 3anaqa Ltypma —Jlnysunng Ha rpadpe I' onpenenenHoro suga. pagp I
UMeeT m pebep, CMEXHBIX C OAHOW BHYTPEHHEI BEPLIWHOM, @ OCTasbHbIe 1 BEPWNH SBNSIOTCS BEPLIN-
Hamu cTenenun 1. Kpaesas 3afiadya Ha AaHHOM rpadpe 3afaetcs augpcpepeHLmManbHbIMIA BblpaXeHsSMI
Lrypma - JnyBunng c BelwecTBEHHbIMU NOTEHLMANaMK1, KpaeBbIMi yCrosusMu [upuxne v cTaHLapTHbIMU
ycnoBusiMu ckneiiki. OnpefieneHHas Takum 0bpa3oM kpaesasi 3aiaqa MMEET CHETHOE MHOXECTBO COb-
CTBEHHbIX 3Ha4€eHMiA. Mbl pPacCMOTPUM BbIHETHI LaroHabHbIX 31EMEHTOB MaTpuLibl Belinsi B coBCTBEHHbIX
3Ha4eHusIX, KOTOPbIe HA30BEM BECOBbLIMU YMCTIAMU. DNEMEHTLI MaTpULb Belns SBnsITCs MepOMOPIHLIMM
CPYHKLMSIMI C NPOCTBLIMM MONOCaM B COBCTBEHHBIX 3HaueHnsix. OTMETIM, YTO BECOBbIE YiCMa B LAHHOM
cnyyae siBnsioTCS 0606LEeHnEM BeCOBBIX Yncen oneparopa LUtypma — JiuyBunns Ha KoHeYHOM MHTEpBare,
KOTOpbIe OMPeAENsioTCs Kak 00paTHble BENMUMHbI KBAAPATOB HOPM COOCTBEHHBIX (PYHKLIMIA. STH Yncna Bme-
CTe C COBCTBEHHBIMM 3HAYEHNSIMU UrPAIOT PO/b CNEKTPabHBIX AAHHBIX AN1S 0LHO3HAYHOIrO BOCCTAHOB/EHNS!
onepatopa. C NoMOLLbI0 NHTErPUPOBaHMS MO KOHTYpaM By AyT MonyyeHsl acUMMTOTUHECKIE CDOPMYTbI LS
BECOBbIX YUCEN, B Cy4ae acCMMNTOTYECKN BMN3KMX COBCTBEHHBIX 3HAYEHMA By ieM UMETL GOOPMYNbI A
CymM. Pe3ynbTatbl MOryT ObiTb MCMONb30BaHbI 415t aHann3a 06paTHbIx CNeKTpanbHbIX 3a4a4 Ha rpadpax.

Knroqesble cnosa: kpaesast 3afaya LUtypma—JlnyBunnsi, acumnroTnieckine GoopMysbl, BECOBLIE YMCNa,
rpacp-3sesza.
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