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Рассмотрена расширенная модель гибридных автоматов для динамических систем, где наряду с

дискретной управляющей подсистемой и объектами управления с сосредоточенными по пространству

параметрами имеются объекты управления с распределенными по пространству параметрами (ли-

нейные и стационарные с точки зрения теории автоматического управления). Показана возможность

программной реализации расширенной модели гибридных автоматов на встроенных вычислительных

системах.
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INTRODUCTION

Energy market can significantly influence economy on different levels. Therefore,
hedging of energy price risk has become an important issue for households, firms and
policy makers. Due to recent increase of energy price volatility a wide range of papers
devoted to volatility estimation and hedging strategy building have been published (see
in [1, 2]).

The original hedging strategies assumed that conditional volatility is unchanged in
time [3], i. e. they were static. Later new approaches have been proposed including
dynamic hedging strategies, as well as cross-hedging. Futures contracts are one of the
most widely used financial assets for hedging due to such features as fixed term of
expiration, low transaction cost, high liquidity and low margin requirement.

Dynamic hedging strategies, based on a time-dependent optimal hedge ratio, allow
managing a portfolio of different assets considering cross-correlation of spot and futures
contracts. To calculate the optimal hedge ratio, the first step is to investigate the time-
varying volatility transmission among the assets using one of the parametric models,
for example, VAR-GARCH [4], BEKK-GARCH [5], Markov switching GARCH [6].

In [4] VAR-GARCH and CCC-GARCH (constant conditional correlations) models
are used to define volatility spillovers between oil and stock prices and the authors
come to the conclusion that a better understanding of such links is crucial for portfolio
management. The results also show that for all the pairs, consisted of oil and stock
from some economic sector, short position of financial sector stock is the most effective
strategy to hedge oil price risks.

Time-varying conditional correlations and hedge ratios of Goldman Sach’s Energy
index pared with S&P 500 are examined in [7]. The authors implement a BEKK-GARCH
specification for conditional variances and include US dollar index as an independent
variable in mean equation. According to their empirical results, energy index show
better performance as a hedge instrument for equities during extreme downturns.
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The linkage of crude oil market (proxy of oil price is the West Texas Intermediate
crude oil price) and stock markets of the G-7 countries are studied in [5]. They combine
a bivariate BEKK-GARCH model with wavelet approach in order to analyze volatility
spillovers and compute hedging ratios and optimal weights that are varying across scales.

Moreover, Wang and Liu [8] investigate volatility spillovers and dynamic correlations
between crude oil and stock markets using BEKK-, CCC- and DCC-GARCH models.
They focus on the dynamic relationships between markets in countries that have been
divided into oil-exporting and oil-importing. As a result, in this hedging strategy crude
oil risk can be better hedged by indices of oil-exporting countries. It happens because of
the higher level of sensitivity to geopolitical events compared to oil-importing countries.

In [9] an attempt is made to investigate the time-varying correlations using the
multivariate DECO-FIEGARCH approach. As for hedging, their results show that gold
could be better instrument than oil while reducing stock price risk.

There is a large number of different approaches that increase hedging efficiency.
Ghoddusi and Emamzadehfard [10] apart from estimation of contagion effects consider
the maturity of the futures contracts and build three different hedge estimation methods,
based on OLS, error correction model and GARCH. Among them OLS hedging strategy
shows the best performance on short and long horizons.

For example, the researchers [2] implement quantile hedge ratio and compare it
with minimum variance for three energy-related commodities: crude oil, heating oil and
natural gas. In a case of long hedging horizons, they firstly use wavelet analysis to
decompose the daily return series and find that on horizon of four weeks the both ratios
for crude oil and heating oil converge.

The aim of this paper is to introduce spatial effects, i. e. cross-sectional dependencies,
in building the hedging strategy. The idea to take into account cross-sectional depen-
dencies in finance came from spatial econometrics and was introduced by [11]. Their
model is based on the assumption that a lot of the cross-sectional dependencies between
the stock returns can be captured by three different types of dependence: a general de-
pendence, dependence within industrial branches, and dependence based on geographic
locations.

For instance, authors [12] focus on the modelling of dependencies among the world
financial markets and ability to forecast them. They propose a simple FDI-based measure
of financial distance. The use of this measure in model significantly reduces the mean
squared error in returns prediction and helps to capture the dependencies in world
financial markets.

There is already some evidence that spatial models are good in optimal hedging ratio
calculation, forecasting, modeling the effects of contamination and volatility spillovers
in comparison with other multivariate models [13–15].

In this paper, we build hedging strategy following methodology of time-variant hedge
ratio computation described in [16]. In contrast to previous studies, we rely on such
multivariate volatility model as BEKK-GARCH with spatial effects and use generalized
orthogonal (GO-GARCH) and dynamic conditional correlations (DCC) GARCH models
as a benchmark, (for more details, see [17,18]). The comparison was made using hedging
effectiveness proposed by [3]. We use data from Russian financial market, investigating
eight companies from energy sector during 2011–2018.

The rest of the paper is organized as follows: section 1 gives a short description of
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multivariate GARCH models used in the article. Section 2 describes methodology of
hedging strategy building. Section 3 provides information about the dataset. Section 4
reports estimation results and section 4 concludes.

1 . MULTIVARIATE GARCH MODELS

Let xt, xt = (x1t, x2t, . . . , xnt)
′ be a portfolio consisted of n assets at time moment t.

xt is represented as a sum of its mathematical expectation E (xt|Ft), conditional on all
available at t − 1 information, and innovations yt,

xt = E (xt|Ft−1) + yt, t = 1, . . . , T. (1)

Innovations yt conditional on volatility Ht are distributed normally with zero mean,

yt|Ht ∼ N (0, Ht) . (2)

For the purposes of hedging strategy building, we focus our attention on volatility
matrix Ht. Its specifications used in the paper are described below.

1.1. S-BEKK model

The spatial specification of the multivariate model of generalized autoregressive con-
ditional heteroscedasticity (spatial BEKK) allows to take into account both temporal and
spatial effects in the dynamics of volatility [17]. Such effects are modelled using weight
matrix that is given exogenously and can be defined either as a binary matrix or as a
function of the economic distances [19].

The variance-covariance matrix Ht in spatial BEKK model has the following struc-
ture:

Ht = C ′C + A′
t−1yt−1y

′
t−1At−1 + B′

t−1Ht−1Bt−1, (3)

where coefficient matrices A, B, C are defined in (4)–(7) and contain spatial component
in dynamic weight matrices Wt.

At−1 = diag(a0) + diag(a1)Wt−1, (4)

Bt−1 = diag(b0) + diag(b1)Wt−1, (5)

C ′C = D−1diag(d0)(D
′)−1, (6)

where constant matrix D is computing as:

D = In − diag(d1)W, (7)

where W — mean value of dynamic weight matrix Wt.
Although parameter matrices have parameters only on main diagonals, such

parametrization implies that parameter matrices are complete, owing to the presence
of weight matrices. As a result, the model (3)–(7) provides plausible volatility dynam-
ics together with reduced number of parameters, which is linear in n. In contrast, in
original BEKK model [20] complete parameter matrices are obtained by at least O(n2)
parameters.

The dynamic weight matrix Wt contains information about economic distance be-
tween assets and each element of matrix in time t, wijt is computed as follows,

wijt =

(
1 −

(
dijt

b

)2
)2

, if j is one of the neighbours for i. (8)
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In this matrix element dijt is the economic distance between assets (see section 3
for more details).

1.2. DCC-GARCH

The DCC model, proposed by [21], is defined as follows,

Ht = DtRtDt, Dt = diag
(√

ht

)
, (9)

ht = ω + Ayt−1 ⊙ yt−1 + Bht−1, (10)

Rt = (diag(Qt))
− 1

2 Qt (diag(Qt))
− 1

2 , (11)

Qt = (1 − α − β)Q̄ + αεt−1ε
′
t−1 + βQt−1, (12)

A, B — diagonal matrices of parameters; Dt — diagonal matrix of conditional standard
deviations of yt; Q̄t — unconditional variance matrix; Rt — conditional correlation matrix
with unities on the main diagonal.

1.3. GO-GARCH

The GO-GARCH model is a special case of the BEKK model [22]. In this model the
volatility matrix is parametrized as follows,

Ht = XVtX
′, (13)

where Vt — diagonal n × n matrix with univariate GARCH processes on the main
diagonal; X — n × n matrix based on singular value decomposition, which is not time
depended (see [22] for details).

2 . DYNAMIC HEDGE RATIO

In this paper we implement multiple hedging approach instead of traditional one,
where only two assets — spot and futures — are in the portfolio. Following [12], we
compute the portfolio return yp for the investor, who holds n spot positions, which are
hedged with futures contracts, as

yp = ω′ys − β′yf , (14)

where ys — stock returns, yf — futures returns, ω — n×1 vector of weights in unhedged
portfolio, β — n × 1 vector of hedge ratios.

The optimal vector of hedge ratios β∗ in a case of minimum-variance approach can
be obtained through

dVar(yp)

dβ
=

(
β′Hf

)′ −
(
ω′Hsf

)′
= 0, (15)

where Hsf and Hf are variance-covariance matrices for the spot-futures pairs and futures
respectively.

Therefore, the optimal vector of hedge ratios is:

β∗
t =

(
Hf

t

)−1

Hsf
t ω. (16)

Without loss of generality we take unit vector for ω.
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In the framework of the study we compare hedging strategies by hedging efficiency
calculated as financial results of the portfolio (the sum of logarithmic returns) on forecast
subsample and Sharp ratio.

Sharp ratio SR is obtained as

SR =
yp − yn

Var(yp)
, (17)

where yn — risk free ratio.

3 . DATA DESCRIPTION

Our sample covers the data of eight companies from energy sector in Russia. The list
of companies can be seen in Table 1. All the data are obtained from the Finam website
(https://www.finam.ru/). Descriptive
statistics of spot assets’ returns can be
found in Appendix, Table A1.

The close price was used as the
daily price for both spot assets and fu-
tures. The dates range from June 20,
2011 until July 12, 2018 excluding pub-
lic holidays, therefore the full sample
contains 1681 observations.

Table 1

Tickers of spot assets

Company Ticker Company Ticker

FSK YeES FEES Rosneft ROSN

Gazprom GAZP RusHydro HYDR

Lukoil LKOH Surgutneftegas SNGS

Novatek NVTK Tatneft TATN

The economic distances for weight matrices are calculated as a difference in trade
volume (see example of weight matrix in Appendix, Table A2). Using a difference in
trading volume as a proxy is caused by the fact that it is an endogenous variable and
correlates with different measures of volatility [23]. [24] also point out that volatility
of trading volume contains information about the intensivity of trading deals and incor-
porates the price effects of market activity arising because of speculators’ or hedgers’
strategies.

Econometric calculations were carried out on Amazon Elastic Compute Cloud service
with RStudio Amazon Machine Image (AMI) installed (https://aws.amazon.com/). The
AMI contains R version 3.3.1 running on Ubuntu 16.04 LTS (the AMI was developed
by Louis Aslett, www.louisaslett.com/RStudio_AMI/).

4 . EMPIRICAL RESULTS

The empirical results of this work include the evaluation of three multivariate
GARCH models, namely DCC, GO-GARCH and S-BEKK; building three different hedg-
ing strategy based on them; comparison of the strategies obtained by hedging efficiency
and Sharp ratio for the hedged portfolio.

Optimal minimum-variance hedge ratios are calculated according to (16) for the
predicted values of volatility. As a forecast subsample we use the last one-third of the
sample which include 560 observations.

The average, maximum and minimum values of the optimal HR are presented in
Appendix, Table A3. The average values for S-BEKK model vary from 0.161 to 1.949.
It should be noted that only for model with spatial effects the minimum value of HR is
negative in the case of NVTK, FEES and HYDR. For others the values of optimal HR
change from 0.303 to 1.493.

The hedging efficiency measures are presented in Table 2. The unconditional variance
of portfolio is slightly different for the DCC and GO-GARCH models.
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Hedging, based on the model with spatial

effects (S-BEKK), allows to reduce portfolio

risk to 21% from an initial value of 68% for

non-hedged portfolio.

The S-BEKK model turns out to be the

most effective and allows to achieve the great-

est financial result — 42% and shows the high-

est value of Sharp Ratio — 1.588 (considering

the risk free ratio — 8.2% 1).

Table 2

Results on forecast subsample

Model HE SR Var

S-BEKK 41.657 1.588 21.066

DCC 27.679 1.193 16.326

GO-GARCH 22.647 0.881 16.405

Note. HE — hedging efficiency, SR —
Sharp ratio, Var — portfolio variance.

CONCLUSION

In this study we incorporate spatial dependencies between assets into hedging strat-
egy. To calculate the economic distance we apply the difference between assets’ trade
volumes as a measure of economic proximity. The obtained hedge ratios are time-variant
and calculated for such volatility models as DCC, GO-GARCH and S-BEKK GARCH.
Therefore, the consideration of spatial effects in the S-BEKK model allows to increase
the hedging efficiency to 42% and decrease risk to 21%.

The current research can be continued in several directions. First, portfolio can be
supplemented by assets in other countries. Secondly, the financial indicator which is
used for weight matrices computation can be changed to achieve better results in the
estimation of volatility.

We believe that the results obtained in the paper could provide important implications
for portfolio and risk management practitioners.
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Appendix

Table A1

Descriptive statistics of spot assets‘ return

Statistic Mean St. Dev. Min Q(25) Median Q(75) Max

LKOH 0.055 1.564 −10.280 −0.820 0.048 0.911 9.240

GAZP −0.019 1.641 −14.959 −0.927 −0.083 0.907 7.620

NVTK 0.058 1.945 −17.038 −0.981 0.024 1.054 9.363

ROSN 0.032 1.681 −8.054 −0.945 0.000 1.004 7.059

SNGS 0.003 1.785 −10.911 −0.935 0.000 0.926 8.750

TATN 0.086 2.165 −9.244 −1.163 0.052 1.299 11.730

FEES −0.041 2.806 −24.655 −1.321 −0.050 1.211 15.551

HYDR −0.040 2.140 −9.932 −1.178 −0.058 1.068 12.467

Note. Q(25) and Q(75) — 25%th and 75%th quantiles respectively. The rest
designations are self-explanatory.

Table A2
Mean value of weight matrix, x100

1      0.00      7.25      7.22      7.23      7.25      7.23      7.19      7.19      7.20      7.20      6.72      7.19      6.95      6.95      6.86      0.38

2      7.25      0.00      7.22      7.23      7.25      7.24      7.19      7.20      7.20      7.21      6.71      7.19      6.94      6.94      6.86      0.38

3      7.24      7.24      0.00      7.21      7.25      7.23      7.19      7.17      7.19      7.17      6.73      7.17      6.94      6.96      6.87      0.43

4      7.25      7.25      7.21      0.00      7.24      7.24      7.18      7.19      7.19      7.18      6.72      7.20      6.93      6.95      6.86      0.40

5      7.25      7.26      7.23      7.24      0.00      7.24      7.19      7.18      7.19      7.20      6.70      7.19      6.94      6.94      6.86      0.39

6      7.25      7.26      7.23      7.24      7.24      0.00      7.16      7.18      7.18      7.19      6.73      7.18      6.94      6.98      6.85      0.39

7      7.23      7.23      7.20      7.22      7.22      7.20      0.00      7.19      7.19      7.18      6.72      7.18      6.92      6.97      6.91      0.43

8      7.23      7.23      7.19      7.20      7.21      7.20      7.20      0.00      7.20      7.19      6.74      7.20      6.98      6.96      6.90      0.38

9      7.22      7.21      7.18      7.19      7.19      7.19      7.17      7.17      0.00      7.24      6.76      7.25      6.99      6.98      6.88      0.37

10      7.21      7.23      7.18      7.19      7.21      7.20      7.18      7.18      7.23      0.00      6.73      7.25      6.96      6.98      6.88      0.39

11      6.92      6.85      6.99      6.94      6.84      6.90      6.86      6.88      6.89      6.87      0.00      6.92      6.91      6.87      7.02      3.36

12      7.21      7.21      7.17      7.20      7.19      7.19      7.16      7.17      7.25      7.28      6.74      0.00      6.96      7.00      6.89      0.40

13      7.06      7.03      7.05      7.03      7.10      7.05      7.02      7.02      7.07      7.06      6.72      7.08      0.00      7.20      6.92      1.59

14      7.06      7.04      7.05      7.04      7.03      7.14      7.11      7.04      7.10      7.08      6.81      7.14      6.99      0.00      6.97      1.40

15      6.96      6.96      7.00      6.97      6.96      6.97      7.12      7.03      7.04      6.99      7.01      7.02      6.96      6.92      0.00      2.10

16      4.17      4.11      5.12      4.77      4.49      4.91      5.45      7.35      4.45      4.06      15.1      4.53      11.5      10.0      10.0      0.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Note. (1)–(8) and (9)–(16) are spot and futures tickers respectively as listed in Table 1.

Table A3

Statistics for optimal hedge ratio

Model S-BEKK DCC GO-GARCH

Ticker max min mean max min mean max min mean

LKOH 2.423 0.548 1.544 1.060 0.841 0.870 0.865 0.303 0.852

GAZP 2.645 0.250 1.799 0.978 0.874 0.876 0.892 0.679 0.692

NVTK 1.078 −0.940 0.300 1.214 1.113 1.210 1.104 1.052 1.102

ROSN 2.482 0.199 0.961 0.882 0.691 0.705 1.219 1.103 1.110

SNGS 0.906 −0.667 0.161 0.527 0.366 0.400 0.620 0.552 0.558

TATN 2.678 0.155 1.286 1.493 1.178 1.231 1.188 1.171 1.172

FEES 1.479 −0.392 0.731 1.040 0.703 0.724 0.974 0.810 0.822

HYDR 2.470 −0.278 0.949 0.883 0.870 0.874 1.048 0.822 0.861

Note. Max, min and mean correspond to maximum, minimum and mean values of
optimal hedge ratio.
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