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There are several approaches to the problem of construction of an orthogonal MRA on Vilenkin groups, but

all of them are reduced to the search of the so-called scaling function. In 2005 Yu. Farkov used the so-called

“blocked sets” in order to find all possible band-limited scaling functions with compact support for each set

of certain parameters and his conditions are necessary and sufficient. S. F. Lukomskii, Iu. S. Kruss and

G. S. Berdnikov presented another approach in 2014–2015 which has some advantages over the previous

ones and employs the notion from discrete mathematics to achieve the same goals. This approach gives an

algorithm for construction of band-limited orthogonal scaling functions with compact support in a concrete

fashion using some class of directed graphs, which, in turn, is obtained from the so-called N -valid trees

introduced by the same authors in 2012. Up to this point, though, it was not known whether this algorithm is

good enough to produce any possible orthogonal scaling function of such a class. This paper describes the

aforementioned algorithm and proves that it can be viewed as a necessary and sufficient condition itself, i. e. it

produces any possible orthogonal scaling function. Additionally, we get another, more convenient description

of the class of directed graphs we are interested in.
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INTRODUCTION

Consider (G, +̇) — locally compact Vilenkin group with sequences infinite in both
directions as its elements:

x = (. . . , 0n−1, xn, xn+1, . . . ), xj = 0, p − 1,

where p is an arbitrary prime number; gn = (. . . , 0n−1, 1n, 0n+1, . . . ) are basic
elements in G. Addition +̇ is defined as coordinate wise addition modulus p, i.e.
x+̇y = (xj+̇yj) = (xj + yj mod p). Let

Gn = {x ∈ G : x = (. . . , 0n−1, xn, xn+1, . . . )}, n ∈ Z

be a basic sequence of subgroups, G⊥
n — sequence of ahnihilators, X — character group,

rn ∈ G⊥
n+1 \ G⊥

n — Rademacher functions on group G. Dilation operator A in group

G is defined by the equation A x :=
∑+∞

n=−∞ angn−1, where x =
∑+∞

n=−∞ angn ∈ G; in
character group it is defined by the equation (χA , x) = (χ, A x). Let us define sets

H
(s)
0 = {h ∈ G : h = a−1g−1+̇a−2g−2+̇ . . . +̇a−sg−s}, s ∈ N,

H0 = {x ∈ G : x = a−1g−1+̇a−2g−2+̇ . . . +̇a−sg−s, s ∈ N}.

Set H0 is the set of shifts in G. It is an analogue of the nonnegative integers set.
V. Protasov, Yu. Farkov in [1–3] characterized all diadic wavelets on R+ and

developed an algorithm for their construction. Yu. Farkov in [4, 5] researched scaling
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functions ϕ(x) with compact support on G−N and developed necessary and sufficient
conditions on mask m0(χ), which generates an orthogonal MRA. These conditions hold
with additional assumption

p−1∑

α0=0

|m0(G
⊥
−Nr

α−N

−N r
α−N+1

−N+1 . . . r
α−1

−1 rα0
0 )|2 = 1,

which is necessary for orthogonality of the system of shifts of the corresponding scaling
function ϕ. Yu. Farkov proved that in this case scaling function ϕ generates orthogonal
MRA iff mask m0 does not have the so-called “blocked” sets. The problem of finding such
sets requires exhaustive search of approximately 2pN

different cases, which is possible
only with p and N being rather small.

Thus, the necessity of finding another algorithm arose, the algorithm which does not
require exhaustive search. This necessity triggered the appearance of another approach,
which employs various graphs as the means to construct orthogonal MRA. In [6, 7]
another algorithm for construction of ϕ was developed. It doesn’t require exhaustive
search, but it is valid only for functions |ϕ̂(χ)| constant on cosets G⊥

−1 and taking 2 values
only: 0 or 1. Initially, trees appeared in [8, 9], where they were used for construction
of Riesz MRA. In [10] authors managed to get rid of restriction supp ϕ(x) ⊂ G−1. To
achieve this, the notion of N -valid tree was introduced. It was proved that step function
ϕ(x) with support supp ϕ(x) ⊂ G−N and restriction |ϕ̂(χ)| = 0 or 1 generates orthogonal
MRA if ϕ(x) is constructed by the means of some N -valid tree using the algorithm
presented in the same paper.

In [11] another restriction was omitted. The results of this paper no longer require
ϕ̂(χ) to satisfy “|ϕ̂(χ)| = 0 or 1”. The algorithm for construction of orthogonal scaling
function now has the only restriction: ϕ̂(χ) is a band limited function with compact
support. This algorithm does not require exhaustive search. The problem of constructing
such function is reduced to constructing some digraph, which, in turn, is constructed
using arbitrary N -valid tree.

However, until current article it was not known whether the aforementioned
algorithm is able to construct any possible function ϕ of the described class or not. The
research presented here answers this question with definite “yes”. Thus, the algorithm in
question can actually be viewed as a necessary and sufficient condition for ϕ to generate
an orthogonal MRA on Vilenkin group. As a pleasant complement we incidentally get
another, more convenient description of a certain class of digraphs while proving this
fact.

The structure of the paper is the following. In Section 1 we describe the algorithm
from the paper [11]. In Section 2 we find a necessary condition for scaling function ϕ
using the notion of digraphs, and then we prove that this necessary condition is just a
rephrased sufficient one we have in the form of the algorithm, which, in turn, proves
that the algorithm is a necessary and sufficient condition.

1 . CONSTRUCTION OF A SCALING FUNCTION

Let us introduce the algorithm for construction of scaling function with the
use of digraphs. Denote the collection of step functions constant on cosets of GM

with support supp(ϕ) ⊂ G−N as DM(G−N), M,N ∈ N. Similarly, D−N(G⊥
M) is a

collection of step functions constant on cosets of G⊥
−N with support supp(ϕ) ⊂ G⊥

M . If
ϕ ∈ DM(G−N) generates an orthogonal MRA, then it satisfies the refinement equation
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ϕ(x) =
∑

h∈H
(N+1)
0

βhϕ(A x−̇h) which can also be written in frequency form (see [7])

ϕ̂(χ) = m0(χ)ϕ̂(χA
−1), (1)

where

m0(χ) =
1

p

∑

h∈H
(N+1)
0

βh(χA −1, h) (2)

is a mask of equation (1).
In [7] the following statements were proved.
1. If ϕ̂(χ) ∈ D−N(G⊥

M) is a solution of refinement equation (1) and the system of
shifts (ϕ(x−̇h))h∈H0 is orthonormal, then ϕ generates an orthogonal MRA.

2. If ϕ̂(χ) ∈ D−N(G⊥
M), then the system of shifts (ϕ(x−̇h))h∈H0 is orthonormal iff for

all α−N , α−N+1, . . . , α−1 = (0, p − 1)

p−1∑

α0,α1,...,αM−1=0

|ϕ̂(G⊥
−Nr

α−N

−N . . . rα0
0 . . . r

αM−1

M−1 )|2 = 1. (3)

Thus, in order to construct orthogonal MRA one needs to construct a function
ϕ̂(χ) ∈ D−N(G⊥

M), which is a solution of refinement equation (1) and which satisfies
conditions (3).

Definition 1. Let N be a natural number, p — a prime number. Then N -valid tree is
a tree with vertices αj = 0, p − 1 directed from leaves to root and having the following
properties:

1) the root and all vertices up to (N − 1)-th level are equal to zero;
2) any path (αk → αk+1 → · · · → αk+N−1) of length N −1 is unique in the tree. Here

αi = 0, p − 1.

Let us choose an arbitrary N -valid tree T and construct a scaling function using it.
Algorithm 1. From the tree T we construct a new tree T̃ in a following way.
1. Replace the path of N zeros ending with root with one vertex (0N , 0N−1, . . . , 01).

All vertices of (N + 1)-th level of T are now connected to this vertex in T̃ . It becomes
the root of T̃ .

2. Then we change the values of each vertex without changing the arcs. If in the
tree T we had a path

αN → αN−1 → · · · → α1

starting from the vertex αN , then in the new tree T̃ this vertex has a value equal to
N -dimensional vector (αN , αN−1, . . . , α1).

Because of N -validity of the tree T each possible vector appears in T̃ one
time exactly. Also, if we denote height(T ) = H, height(T̃ ) = H̃, then, obviously,
H̃ = H − N + 1.

Remark. We refer to the tree T̃ as an expanded N -valid tree. Tree T , in turn, is
called shortened N -valid tree. It is easy to switch from one representation to another if
needed, and they describe the same structure as it becomes apparent later in this paper.

26 Научный отдел



G. S. Berdnikov. Necessary and Sufficient Condition for an Orthogonal Scaling Function

Algorithm 2. Now we use T̃ to construct digraph Γ.
Each vertex αN = (αN , αN−1, . . . , α1) of T̃ we can connect to any number of lower

level vertices (αN−1, . . . , α1, α0), i.e. first (N−1) elements of this vertex are equal to last
(N − 1) elements of vertex αN . We call this condition suffix-prefix property. Vertices
that αN is connected to, we denote as (αN−1, . . . , α1, α̃0). I.e. α0 ∈ {α̃0} iff the vertex
αN is connected to (αN−1, . . . , α1, α0) in Γ.

Algorithm 3.
1. Denote

λα−N ,α−N+1,...,α−1,α0 = |m0(G
⊥
−Nr

α−N

−N r
α−N+1

−N+1 . . . r
α−1

−1 rα0
0 )|2.

If a vertex (α−N , α−N+1, . . . , α−1) in digraph Γ is connected to vertices

(α−N+1, α−N+2, . . . , α−1, α̃0)

then we define the values of the mask for the condition
∑

α̃0

λα−N ,α−N+1,...,α−1,α̃0 = 1 and λα−N ,α−N+1,...,α−1,α0 = 0 for all α0 /∈ {α̃0} (4)

to hold. Also, define m0(G
⊥
−N) = 1, which implies λ0,0,...,0 = 1.

2. Using equation (1), one can recover ϕ̂ from the mask we have already generated.
Then the scaling function ϕ itself can be found after the application of inverse Fourier
transform.

The main result of paper [11] is the following.

Theorem 1. Given arbitrary N -valid tree T , let the tree T̃ and graph Γ be
constructed based on T and values of the mask m0(χ) defined with the help of
equation (4). Let H̃ = height(T̃ ). Then the equation

ϕ̂(χ) =
∞∏

k=0

m0(χA
−k) ∈ D−N(G⊥

M)

defines an orthogonal scaling function ϕ(x) ∈ DM(G−N), where M = H̃ − N .

This theorem supplied with aforementioned algorithms describes the process of
constructing step scaling functions with compact support on Vilenkin groups. This
process always results in an appropriate scaling function, i.e. it can be viewed as
a sufficient condition. But can we acquire any possible scaling function with these
properties? To answer this question some additional operations should be introduced.

2 . THE NECESSARY CONDITION AND CRITERIA

Let us describe an algorithm inverse to Algorithm 3. Algorithm 3 describes
construction of ϕ̂ given digraph Γ, a new algorithm describes a process of construction
of a digraph Γ given ϕ̂(χ) ∈ D−N(G⊥

M).
Algorithm 4.
1. Let vertices of our digraph Γ be in the form αj = (αj

i )
N
i=1. Denote {αj} — the set

of all vertices.
2. Let ϕ̂(G⊥

−Nr
α−N

−N r
α−N+1

−N+1 . . . rα0
0 . . . r

αs−1

s−1 ) 6= 0, where s 6 M . Using

ϕ̂(χ) =
∞∏

n=0

m0(χA
−n),
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periodicity of the mask and notation

m0(G
⊥
−Nr

α−N

−N r
α−N+1

−N+1 . . . rα0
0 ) = λα−N ,α−N+1,...,α0 ,

we obtain:

ϕ̂(G⊥
−Nr

α−N

−N r
α−N+1

−N+1 . . . rα0
0 . . . r

αs−1

s−1 ) = λα−N ,α−N+1,...,α0λα−N+1,α−N+2,...,α1 · · · ×

×λαs−N−1,αs−N ,...,αs−1λαs−N ,αs−N+1,...,αs−1,0 . . . λαs−1,0,...,0 6= 0.

Inequality to zero holds iff all the values λαi−N ,...,αi
, in this equation are nonequal to

zero. For every such λ we construct an arc

(αi−N , αi−N+1 . . . , αi−1) → (αi−N+1, αi−N+2, . . . , αi).

3. Checking every coset for each ϕ̂(χ) is nonequal to zero and performing the same
operations we obtain digraph Γ where each arc corresponds to a different nonzero value
of the mask.

Theorem 2 (Necessary condition in terms of graphs). Let ϕ(x) be a scaling
function with ϕ̂(χ) ∈ D−N(G⊥

M) which generates orthogonal MRA on Vilenkin group.
Then digraph Γ constructed with the algorithm 4 has the following properties:

1. If there exists an arc αj → αk, it means that N−1 last components of αj coincide
with the first N − 1 components of αk. In other words, suffix-prefix condition holds.

2. There exists a path to 0 = (0, 0, . . . , 0) from any vertex that is not 0.
3. There are no directed cycles in the graph.
4. The vertex 0 is a source, i.e. there are no arcs coming out of it.
5. The graph includes all possible vertices (α−N , α−N+1, . . . , α−1), ∀ αi = 0, p − 1.

Proof. 1. This property is apparent by the construction algorithm.
2. Let us prove that there exists a path from any nonzero vertex to 0 = (0, 0, . . . , 0).

Since all cosets from the support of ϕ̂(χ) have the form G
⊥
−Nr

α−N

−N r
α−N+1

−N+1 . . . rα0
0 . . . r

αs−1

s−1

and

ϕ̂(G⊥
−Nr

α−N

−N r
α−N+1

−N+1 . . . rα0
0 . . . r

αs−1

s−1 ) = λα−N ,α−N+1,...,α0λα−N+1,α−N+2,...,α1 · · · ×

×λαs−N−1,αs−N ,...,αs−1λαs−N ,αs−N+1,...,αs−1,0 . . . λαs−1,0,...,0 6= 0.

all values of λ in this product are nonzero. This collection of values of λ generates a
path

(α−N , α−N+1, . . . , α1) → (α−N+1, α−N+2, . . . , α0) → · · · → (αs, 0, . . . , 0) → (0, 0, . . . , 0).

Thus, since any coset from the support of ϕ̂(χ) generates a path ending with 0, there
exists a path from any nonzero vertex to 0 = (0, 0, . . . , 0). This proves the property.

3. Let us prove this one by contradiction. Let the graph Γ contain a directed cycle

α1 → α2 → . . . αk → α1.

We rewrite this path using the 1st property and specifying the components of
vertices:

(α1, α2, . . . , αN−1, αN) → (α2, α3, . . . , αN , αN+1) → . . .
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· · · → (αk−N+1, αk−N , . . . , αk−1, αk) → (αk−N+2, αk−N+3, . . . , αk, α1) →
→ · · · → (αk, α1, . . . , αN−1, αN) → (α1, α2, . . . , αN−1, αN).

By construction, every arc corresponds to nonzero value of λ. Existence of such path
means that

λα1,α2,...,αN ,αN+1
λα2,α3,...,αN+1,αN+2

. . . λαk,α1,...,αN−1,αN
6= 0.

Let us recall that by the 2nd property there exists a path from any vertex to 0 vertex.
Thus, at least one vertex αj from the cycle is connected not only to αj+1, but is also a
part of a path αj → αl → αl+1 → · · · → 0.

Without the loss of generality we consider this vertex to be α1. Consequently, there
exists a path

(α1, α2, . . . , αN−1, αN) → (α2, α3, . . . , αN , αl) → (α2, α3, . . . , αl, αl+1) → · · · →

→ (αs−N , αs−N+1, . . . , αs−1, αs) → (αs−N+1, αs−N+2, . . . , αs, 0) → . . .

· · · → (αs, 0, . . . , 0, 0) → 0,

which corresponds to the product

λα1,α2,...,αN ,αl
λα2,α3,...,αl,αl+1

. . . λαs−N−1,αs−N ,...,αs−1λαs−N ,αs−N+1,...,αs−1,0 . . . λαs−1,0,...,0 6= 0.

It is possible to construct a product

λα1,α2,...,αN ,αN+1
λα2,α3,...,αN+1,αN+2

. . . λαk,α1,...,αN−1,αN
×

×λα1,α2,...,αN ,αN+1
λα2,α3,...,αN+1,αN+2

. . . λαk,α1,...,αN−1,αN
×

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

×λα1,α2,...,αN ,αN+1
λα2,α3,...,αN+1,αN+2

. . . λαk,α1,...,αN−1,αN
×

×λα1,α2,...,αN ,αl
λα2,α3,...,αl,αl+1

. . . λαs−N−1,αs−N ,...,αs−1λαs−N ,αs−N+1,...,αs−1,0 . . . λαs−1,0,...,0 6= 0,

where the product λα1,α2,...,αN ,αN+1
λα2,α3,...,αN+1,αN+2

. . . λαk,α1,...,αN−1,αN
is multiplied by

itself n times, n is an arbitrary natural number.
This product means that ∀ n ∈ N the following is true:

ϕ̂(G⊥
−N

n−1∏

i=0

(rα1
−N+ikr

α2
−N+ik+1 . . . rαk

−N+ik+k−1) × rαl

−N+nkr
αl+1

−N+nk+1 . . . rαs

−N+nk+s−l) 6= 0.

This contradicts the compactness of support of ϕ̂(χ). Thus, Γ does not contain
directed cycles.

4. This property follows from the second and the third ones. We also prove it by
contradiction.

Let an arc 0 → αj exist in Γ. By the second property there exists a path αj → · · · → 0.
Thus there exists a directed cycle 0 → αj → · · · → 0, which contradicts the third
property.

5. Since the necessary condition of the mask
∑
α0

|λα−N ,α−N+1,...,α−1,α0 |2 = 1 holds,

for any collection α−N , α−N+1, . . . , α−1 there exists at least one α0 such that the
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corresponding value of the mask is not equal to 0. This, in turn, means that for every
such collection there exists an arc

(α−N , α−N+1, . . . , α−1) → (α−N+1, . . . , α−1, α0).

Thus, the constructed graph includes all possible vertices (α−N , α−N+1, . . . , α−1),
∀ αi = 0, p − 1. ¤

Let us denote the collection of graphs constructed using algorithms 1–2 as Γ1. Let
us denote the collection of graphs satisfying the properties of Theorem 2 as Γ2. At this
point we can see the following implication:

Γ ∈ Γ1 generates ϕ̂– FT of a scaling function ⇒
⇒ ϕ̂– FT of a scaling function-generates Γ ∈ Γ2,

thus Γ1 ⊂ Γ2. But if the set Γ2 is wider then the algorithms 1–3 are not able to generate
any possible scaling function! On the other hand, if Γ1 = Γ2 then the algorithms are
actually the necessary and sufficient condition for ϕ̂ to be an orthogonal scaling function
with compact support. Let us prove this.

Theorem 3. Set Γ1 contains the set Γ2, i. e. Γ2 ⊂ Γ1.

Proof. To prove the fact, we need to show that any graph satisfying the properties
from Theorem 2 can be constructed from some N -valid tree using algorithms 1–2.

Consider Γ ∈ Γ2. Let us construct T̃ from algorithm 1 based on this graph.
Step 1. Choose α1 = (α1

1, α
1
2, . . . , α

1
N), α1

i = 0, p − 1. Then choose the longest path
of the form p(1) = α1 → p2,(1) → · · · → pl1,(1) → 0, i. e. the longest path starting from
α1 and ending with 0. This path exists since there are no cycles (and thus no paths of
unlimited length) and since there exists a path from each nonzero vertex to 0. If there
exist several paths of maximal length we choose any of them. Let us include this path
into the tree. At this point the tree consists of the only “branch”:

α1 → p2,(1) → · · · → pl1,(1) → 0.

Denote p1,(1) = α1, pl1+1,(1) = 0.
Step 2. Choose the next value α2 = (α2

1, α
2
2, . . . , α

2
N), α2

i = 0, p − 1. Choose the
longest path p(2) = α2 → p2,(2) → · · · → pl2,(2) → 0. Denote p1,(2) = α2, pl2+1,(2) = 0.
Again, let us mention that if there exist several longest paths we choose an arbitrary
one. Include this path into a tree.

Out of all vertices of p(2) already in the tree choose vertex pk,(2) with the lowest k.
It’s guaranteed that at least 0 is already in the tree. Two cases are possible: either the
whole “tail” of the path pk,(2) → pk+1,(2) → · · · → pl2,(2) → 0 is already in the tree or not.
In the latter case it means that there exists path of the same length from pk,(2) to 0.
Indeed, since we chose the longest paths from α2, the “tail” of such path starting from
any pm,(2) is the longest path from the vertex pm,(2).

Case 1. The “tail” is in the tree already.
In this case ∃ k, j : pk,(2) = pj,(1), where k, j are the greatest of all such values, and

∀ i, pk+i,(2) = pj+i,(1). If k = 1 then the whole path p(2) is in the tree already and we do
not change it. Otherwise connect the path α2 → · · · → pk−1,(2) to pk,(2) = pj,(1). We have
included his path in the tree. No cycles have appeared in the process, so our structure
is a tree, still.
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Case 2. The “tail” is not in the tree.
As we have already discussed, in this case the path from pk,(2) to 0 existing in the

tree (denote it by pk,(2) → p̃k+1,(2) → · · · → p̃l2,(2) → 0), has the same length as the “tail”
pk,(2) → pk+1,(2) → · · · → pl2,(2) → 0. It means that original graph Γ contains both of
them. Let us choose

p̃(2) = α2 → p2,(2) → . . . pk,(2) → p̃k+1,(2) → · · · → p̃l2,(2) → 0

instead of p(2) and include it in the same way as Case 1.
Step n. Choose the next vertex αn. Choose the longest path p(n) = αn →

→ p2,(n) → . . . → pln,(n) → 0. Assume all paths p(1), p(2), . . . , p(n−1) have already been
included in the tree, and include p(n) into it. Denote p1,(i) = αi, pli+1,(i) = 0

Similarly to Step 2 we have already chosen pk,(n) in the tree and having the lowest
possible index k. The “tail” of pk,(n) → pk+1,(n) → · · · → pln,(n) → 0 is either in the tree
already or we can rechoose it to satisfy this property.

If k = 1 then the whole path p(n) is in the tree already and we don’t change anything.
Otherwise connect the path αn → · · · → pk−1,(n) to pk,(n) which is in the tree already.
The path is included, no cycles have appeared, we still have a tree.

Choosing all possible αi we obtain a tree with all those vertices. During the
construction process we used paths from Γ ∈ Γ2, thus:

1) every possible αi appears in the tree only once;
2) the vertex 0 is a root;
3) if there exists an arc αi → αi+1 that implies that the last N − 1 components of αi

are equal to the first N − 1 components of αi+1, i.e. suffix-prefix property holds.
These properties mean that we got an expanded N -valid tree T̃ . It is easy to return

to the shortened one T if needed. Let us now reconstruct Γ using this tree.
All the arcs of T̃ also exist in Γ. Let us add the arcs which exist in Γ but not in T̃ .
Let us prove that each added arc is the arc from higher level vertex to the lower

level one. Indeed, by construction any path αk → αk+1 → · · · → αk+s → 0 of length s+2
is the longest path of Γ starting from αk. Let αj be a vertex of a greater or equal level,
i.e. the path αj → αj+1 → · · · → αj+s1 → 0 has the length s1 + 2, where s1 > s. If we
need to connect αk with αj while reconstructing arcs of Γ, it means that there exists
the path αk → αj → αj+1 → · · · → αj+s1 → 0 and it has the length of s1 + 3 > s + 2
greater than the chosen longest path αk → αk+1 → · · · → αk+s → 0. It is impossible by
construction.

Thus, for an arbitrary Γ ∈ Γ2 we found N -valid tree T̃ which can generate Γ using
algorithm 2. The theorem is proved. ¤

The collection of Theorems 1–3 shows that there is a bijection between all possible
supports of scaling function and graphs of class Γ1 = Γ2. Algorithms 1, 2 describe a way
of constructing such graphs, algorithm 3 shows how to construct an orthogonal scaling
function. On the other hand, we have a descriptions of all these graphs in Theorem 2.
These are all small, but pleasant consequences of the work. The main achievement is
the following, though.

We have proven that by the use of algorithms 1–3 we can obtain any possible
ϕ(x) ∈ DM(G−N) which generates an orthogonal MRA on Vilenkin groups, thus the
algorithms 1–3 can be viewed as a necessary and sufficient condition for such function.
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УДК 517.986.62

Необходимое и достаточное условие ортогональной масштабирующей
функции на группах Виленкина

Г. С. Бердников

Бердников Глеб Сергеевич, ассистент кафедры математического анализа, Саратовский националь-

ный исследовательский государственный университет имени Н. Г. Чернышевского, Россия, 410012,

Саратов, ул. Астраханская, д. 83, evrointelligent@gmail.com

Существуют несколько подходов к задаче построения ортогонального кратномасштабного анализа

на группах Виленкина, но все они сводятся к поиску так называемой масштабирующей функции. В

2005 г. Ю. А. Фарков использовал так называемые «блокированные» множества, чтобы строить все

возможные масштабирующие функции с компактным носителем и ограниченной частотной полосой
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