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INTRODUCTION

The classical theory for thin homogeneous elastic structures governing bending,
extensional and torsional-shear vibration modes, e.g. see [1–3], is asymptotically con-
sistent over the low-frequency range. Obviously, it does not take into consideration any
of high-frequency modes with the cut-off frequencies related to thickness resonances.
At the same time, currently available refined formulations incorporating the lowest
high-frequency modes ( [4, 5] and reference therein) do not appear to be uniformly
asymptotically valid, as noted for example in [6]. These observations are also true for
layered structures not demonstrating a substantial contrast in material and geometric
properties of the layers, e.g. [7]. However, multi-parametric analysis of strongly vertical
inhomogeneous three-layered plates in [6], see also [8] and [9], indicates that for cer-
tain combination of problem parameters the lowest thickness shear resonance frequency
becomes asymptotically small, resulting in an extra low-frequency vibration mode in
comparison with the traditional layout. Four scenarios studied in [6] correspond to the
practically important setups of sandwich structures, laminated glass, photovoltaic panels
and precipitator plates utilised in gas filters, see [10–13].

In this paper we extend the framework of the cited publication [6] on thin strongly
inhomogeneous plates to multi-layered structures with arbitrary number of layers. For
the sake of definiteness, the upper and lower faces are supposed to be clamped. For
homogeneous plates, such boundary conditions do not support low-frequency vibrations
[14, 15]. Below we consider layers of two different types, namely, “strong” and “weak”
ones, adapting the ratio of their stiffnesses and densities as a single small parameter,
such that the wave speeds in strong and weak components are of the same order. In
addition, we do not impose any special restriction on the thicknesses of the layers,
apart from the assumption that all of them are also of the same asymptotic order. The
consideration is restricted to the evaluation of thickness resonances.

The paper is organised as follows. The problem is formulated in Section 1. The general
asymptotic procedure is developed in Section 2. A polynomial equation is derived for the
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leading order values of the thickness resonances along with linear algebraic equations
for the associated eigenforms. As might be expected, the order of the aforementioned
equation coincides with the number of strong layers undergoing almost rigid body mo-
tion [9]. In this case the weaker layers are subject to nearly homogeneous thickness
deformation. The results of Section 2 are specified in the next Section 3 for a five-layered
laminate. A correction to the leading order approximation is also calculated, in order
to illustrate small deviations from rigid body motions and homogeneous deformations.
Numerical results are discussed in the last section.

1. STATEMENT OF THE PROBLEM

Consider a thin elastic laminate composed of n alternating strong and weak layers of
thickness hi, i = 1, ..., n, see Fig. 1. Denote Young moduli, Poisson ratios and densities
of the layers by Em, νm and ρm with m = 1 and m = 2 corresponding to weak and
strong layers, respectively. Thus, E1 ≪ E2 and also, for the sake of definiteness, we

assume that E1/E2 ∼ ρ1/ρ2.

h1

h2

h3

hn
hn-1

h4

...

Fig. 1. Multi-layered laminate with n

alternating weak and strong layers

The consideration below is oriented to
harmonic vibrations with angular frequency
ω of a laminate with fixed faces over the low
frequency range

ω ≪ 1

hi

√

Em

ρm

, i = 1, ..., n, m = 1, 2.

(1)
The main focus is on the effect of elas-

tic contrast, since low frequency vibrations
is not a feature of homogeneous structures
with fixed faces, see [14]. We restrict our-
selves to the evaluation of the cutoffs of low-
frequency modes arising near the thickness
resonances of a flat plate clamped along the
faces of weak outer layers.

We start from the equations [2]

Em

2(1 + νm)κm

d2v3i

dz2
+ ρmω2v3i = 0, i = 1, .., n, m = 1, 2,

where

κm =

√

1 − 2νm

2 − 2νm

and
Em

2(1 + νm)

d2vki

dz2
+ ρmω2vki = 0, k = 1, 2,

for stretch and shear thickness vibrations, respectively, with vki and v3i denoting tangen-
tial and transverse displacements. The continuity conditions along interfaces are written
as

v3i = v3j,
E1

2(1 + ν1)κ1

dv3i

dz
=

E2

2(1 + ν2)κ2

dv3j

dz
,
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or

vki = vkj, k = 1, 2,

E1

2(1 + ν1)

dvki

dz
=

E2

2(1 + ν2)

dvkj

dz
,

where j = i + 1 for a “weak-strong” interface and j = i − 1 for a “strong-weak” one. In
addition, along fixed faces z = 0 and z = h1 + h2 + ... + hn

vk1 = v31 = vkn = v3n = 0, k = 1, 2.

The equations above can be re-written in the form

Dm
d2ui

dz2
+ ρmω2ui = 0, (2)

with

ui = uj,

D1
dui

dz
= D2

duj

dz

(3)

and
u1 = un = 0 (4)

at z = 0 and z = h1 + h2 + ... + hn, where ui = v3i and Dm =
Em

2(1 + νm)κm

for stretch

vibrations and ui = vki and Dm =
Ei

2(1 + νi)
for shear vibrations.

The formulated boundary value problem can be treated asymptotically over low-
frequency range (1), due to the contrast properties of the layers.

2. ASYMPTOTIC PROCEDURE

First, re-write the equations in the previous section in dimensionless local coordinates
Zi = z/hi and frequencies Ωi = ωhi/cm with cm =

√

Dm/ρm, i = 1, 2, ..., n and m = 1, 2,
having

d2ui

dZ2
i

+ Ω2
i ui = 0. (5)

The frequency parameters corresponding to both weak or strong i-th and j-th layers
are related to each other as

Ωi = Li
jΩj, (6)

where Li
j = hi/hj. At the same time, for i-th weak layer and j-th strong one

Ωi = cLi
jΩj, (7)

where c = c2/c1. Boundary conditions (4) become

u1|Z1=0 = un|Zn=bn+1 = 0, (8)

where

b1 = 0 and bi =
1

hi

i−1
∑

n=0

hn, i = 2, ..., n,

such that bi 6 Zi 6 bi + 1.

Механика 449



Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2018. Т. 18, вып. 4

Continuity conditions (3) along interfaces take the form

ui|Zi=bi+1 = ui+1|Zi+1=bi+1
(9)

and
dui

dZi

∣

∣

∣

∣

Zi=bi+1

= εpLi
i+1

dui+1

dZi+1

∣

∣

∣

∣

Zi+1=bi+1

, (10)

where p = 1 if i-th layer is strong, and p = −1 if it is weak. Here small parameter ε is
introduced as the ratio

ε =
D1

D2

≪ 1.

As it has been already mentioned, we also assume that ρ1/ρ2 ∼ ε. In this case we have
Ω2

1 ∼ Ω2
2 ∼ . . . ∼ Ω2

n ∼ ε over low frequency range (1). Similarly to [9], we expand
frequencies Ωi and displacements ui in the asymptotic series

Ω2
i = ε

(

Ω2
i0 + εΩ2

i1 + . . .
)

and
ui = ui0 + εui1 + . . .

At leading order, we have from equation (5) for strong layers

d2ui0

dZ2
i

= 0, (11)

subject to the Neumann boundary conditions

dui0

dZi

∣

∣

∣

∣

Zi=bi

=
dui0

dZi

∣

∣

∣

∣

Zi=bi+1

= 0.

As a result, we arrive at uniform variation across the thickness

ui0 = Ci,0 = const, (12)

corresponding to rigid body motion.
Next, we proceed with equations (11) for weak layers. For inner weak layers we have

ui0|Zi=bi
= Ci−1,0, ui0|Zi=bi+1 = Ci+1,0,

while for outer ones
u10|Z1=0 = un0|Zn=bn+1 = 0.

Thus, we obtain for eigenforms

u10 = C2,0Z1,

...

ui0 = Ci−1,0 + (Ci+1,0 − Ci−1,0) (Zi − bi),

...

un0 = Cn−1,0 (bn + 1 − Zn) .

(13)
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At next order, we start again with the equations for strong layers following from (5).
They are

d2ui1

dZ2
i

+ Ω2
i0ui0 = 0. (14)

The associated boundary conditions, derived from (10) and (12), become

dui1

dZi

∣

∣

∣

∣

Zi=bi

= Li
i−1(Ci,0 − Ci−2,0),

dui1

dZi

∣

∣

∣

∣

Zi=bi+1

= Li
i+1(Ci+2,0 − Ci,0).

(15)

The compatibility of equations (14) and boundary conditions (15) results in the rela-
tions

C2,0 Ω2
20 = L2

1C2,0 − L2
3 (C4,0 − C2,0) ,

...

Ci,0 Ω2
i0 = Li

i−1 (Ci,0 − Ci−2,0) − Li
i+1 (Ci+2,0 − Ci,0) ,

...

Cn−1,0 Ω2
n−1 0 = Ln−1

n Cn−1,0 + Ln−1
n−2 (Cn−1,0 − Cn−3,0) .

(16)

The latter together with formulae Ωi0 = Li
jΩj0, see (6), can be used to deter-

mine unknown constants Ci,0 and, therefore, leading order eigenfrequencies as will be
demonstrated below for a five-layered laminate. In addition, next order corrections to
eigenfrequencies and eigenforms will be derived.

3. FIVE-LAYERED LAMINATE

Consider a five-layered laminate
with alternating weak and strong lay-
ers clamped along the faces of outer
weak layers, see Fig. 2.

First, we have from (16) for two
strong components

C2,0 Ω2
20 = L2

1C2,0 − L2
3 (C4,0 − C2,0) ,

C4,0 Ω2
40 = L4

5C4,0 + L4
3 (C4,0 − C2,0) ,

h1

h2

h3

4h
5h

Fig. 2. Five-layered laminate with clamped faces
composed of two strong and three weak layers

with Ω40 = L4
2 Ω20. These equations yield

Ω2
20 =

(

L2
4

)2 (

L4
5 + L4

3(1 − k)
)

, (17)

together with the relation
C2,0 = k C4,0, (18)

with parameter k defined as

k1,2 =
−b ±

√

b2 + 4L4
2 (L4

3)
2

2L4
3

, b = L4
1L

4
2 + L4

2L
4
3 − L4

3 − L4
5.
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Then, we obtain from (13) and (18) for leading order eigenforms

u10 = C4,0kZ1, u20 = C4,0k, u30 = C4,0 (k + (1 − k) (Z3 − b3)) ,

u40 = C4,0, u50 = C4,0 (1 + b5 − Z5) .
(19)

Next, we have from boundary value problem (14)–(15) for the first order correction
to strong layer displacements

ui1 = Ai,1Z
2
i + Bi,1Zi + Ci,1, i = 2, 4, (20)

where

A2,1 = −1

2
C4,0k Ω2

20, B2,1 = C4,0k
(

L2
1 + Ω2

20b2

)

,

A4,1 = −1

2
C4,0Ω

2
20

(

L4
2

)2
, B4,1 = C4,0

(

Ω2
20

(

L4
2

)2
(b4 + 1) − L4

5

)

.

For weak layers the first order correction is determined from equations (14) subject
to the boundary conditions

u11|Z1=0 = 0, u11|Z1=1 = u21|Z2=b2
,

u31|Z3=b3
= u21|Z2=b2+1 , u31|Z3=b3+1 = u41|Z4=b4

,

u51|Z5=b5
= u41|Z4=b4+1 , u51|Z5=b5+1 = 0.

As a result, we arrive at

ui1 = Fi,1Z
3
i + Gi,1Z

2
i + Hi,1Zi + Ki,1, i = 1, 3, 5, (21)

where

F1,1 = −1

6
C4,0Ω

2
20

(

L1
2

)2
c2k, G1,1 = 0,

F3,1 =
1

6
C4,0Ω

2
20

(

L3
2

)2
c2(k − 1), G3,1 =

1

2
C4,0Ω

2
20

(

L3
2

)2
c2 (b3(1 − k) − k) ,

F5,1 =
1

6
C4,0Ω

2
20

(

L5
2

)2
c2, G5,1 = −1

2
C4,0Ω

2
20

(

L5
2

)2
c2(b5 + 1).

Then, setting one of the constants equal to zero, namely C4,1 = 0, and applying
Dirichlet boundary conditions for weak layers we obtain for the rest of the constants

H1,1 = A2,1b
2
2 + B2,1b2 − F1,1 + C2,1,

H3,1 = A4,1b
2
4 + B4,1b4 − A2,1(b2 + 1)2 − B2,1(b2 + 1) − F3,1

(

3b2
3 + 3b3 + 1

)

−
−G3,1(2b3 + 1) − C2,1,

H5,1 = −A4,1(b4 + 1)2 − B4,1(b4 + 1) − F5,1

(

3b2
5 + 3b5 + 1

)

− G5,1(2b5 + 1)

and

K1,1 = 0, K3,1 = A4,1b
2
4 + B4,1b4 − F3,1(b3 + 1)3 − G3,1(b3 + 1)2 − H3,1(b3 + 1),

K5,1 = −F5,1(b5 + 1)3 − G5,1(b5 + 1)2 − H5,1(b5 + 1),

where C2,1 is still unknown.
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Now, we consider vibrations of strong layers at second order, starting from the
equations

d2ui2

dZ2
i

+ Ω2
i0ui1 + Ω2

i1ui0 = 0, i = 2, 4, (22)

subject to the boundary conditions

dui2

dZi

∣

∣

∣

∣

Zi=bi

= Li
i−1

dui−11

dZi−1

∣

∣

∣

∣

Zi−1=bi−1+1

,

dui2

dZi

∣

∣

∣

∣

Zi=bi+1

= Li
i+1

dui+11

dZi+1

∣

∣

∣

∣

Zi+1=bi+1

.

(23)

The compatibility condition for the last boundary value problem leads to

Ω2
21 =

1

6k

(

2A⋆
2,1

(

− 3b2
2Ω

2
20 + 3L2

1b
2
2 + 3L2

3b
2
2 − 3b2Ω

2
20 + 3L2

3 + 6L2
3b2 − Ω2

20

)

−
−6A⋆

4,1L
2
3b

2
4 + 3B⋆

2,1

(

− 2b2Ω
2
20 + 2L2

1b2 + 2L2
3b2 − Ω2

20 + 2L2
3

)

− 6B⋆
4,1L

2
3b4+

+6C⋆
2,1

(

− Ω2
20 + L2

1 + L2
3

)

+ 12F ⋆
1,1L

2
1 + 6F ⋆

3,1L
2
3

(

3b3 +
)

+ 6G⋆
3,1L

2
3

)

, (24)

where

C⋆
2,1 =

C2,1

C4,0

= −1

6

1

L4
1L

4
2 + L4

2L
4
3 + L4

3k − (L4
2)

2
Ω2

20

×

×
(

2A⋆
2,1

(

3L4
1L

4
2b

2
2 + 3L4

2L
4
3b

2
2 − 3b2

2Ω
2
20

(

L4
2

)2 − 3b2Ω
2
20

(

L4
2

)2
+ 6L4

2L
4
3b2−

−Ω2
20

(

L4
2

)2
+ 3L4

3b
2
2k + 3L4

2L
4
3 + 6L4

3b2k + 3L4
3k

)

+ 2A⋆
4,1

(

3b2
4kΩ2

20

(

L4
2

)2
+

+3b4kΩ2
20

(

L4
2

)2 − 3L4
2L

4
3b

2
4 + kΩ2

20

(

L4
2

)2 − 3L4
3b

2
4k − 3L4

5b
2
4k − 6L4

5b4k − 3L4
5k

)

−

−3B⋆
2,1

(

2b2Ω
2
20

(

L4
2

)2
+ 2L4

1L
4
2b2 + 6L4

2L
4
3b2 − Ω2

20

(

L4
2

)2
+ 2L4

2L
4
3 + 2L4

3b2k + 2L4
3k

)

+

+3B⋆
4,1

(

kΩ2
20

(

L4
2

)2
+ 2b4kΩ2

20

(

L4
2

)2 − 2L4
2L

4
3b4 − 2L4

3b4k − 2L4
5b4k − 2L4

5k
)

+

+12F ⋆
1,1L

4
1L

4
2 + 6F ⋆

3,1

(

3L4
2L

4
3b3 + L4

2L
4
3 − 3L4

3b3k − 2L4
3k

)

− 6F ⋆
5,1

(

3L4
5b5k + L4

5k
)

+

+6G⋆
3,1

(

L4
2L

4
3 − L4

3k
)

− 6G⋆
5,1L

4
5k

)

and all the constants with ⋆ are obtained from their counterparts through division
by C4,0.

4. NUMERICAL RESULTS

Consider a five-layered laminate studied in the previous section with the layers of
same thickness h, i.e. hi = h, i = 1, 2, . . . , 5. Then, we have from (17) and (24) for
eigenfrequencies, and from (19), (20), and (21) for eigenform at k = 1 and k = −1,
respectively

Ω2
2 = ε

(

1 − ε

6

(

5c2 + 2
)

+ . . .
)

, (25)
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with

u1 = Z1 +
ε

6
Z1

(

−Z2
1c

2 + c2 + 24
)

+ . . . ,

u2 = 1 +
ε

2

(

−Z2
2 + 4Z2 + 5

)

+ . . . ,

u3 = 1 +
ε

2

(

−c2Z2
3 + 5c2Z3 − 6c2 + 9

)

+ . . . ,

u4 = 1 − ε

2
Z4 (Z4 − 6) + . . . ,

u5 = −Z5 + 5 +
ε

6

(

c2Z3
5 − 15c2Z2

5 − 24Z5 + 74Z5c
2 − 120c2 + 120

)

+ . . .

(26)

and
Ω2

2 = ε
(

3 − ε

2

(

3c2 + 2
)

+ . . .
)

, (27)

with

u1 = −Z1 +
ε

2
Z1

(

Z2
1c

2 − c2 − 40
)

+ . . . ,

u2 = −1 +
ε

2

(

3Z2
2 − 8Z2 − 35

)

+ . . . ,

u3 = 2Z3 − 5 +
ε

2

(

−2c2Z3
3 + 15c2Z2

3 − 37c2Z3 + 78Z3 + 30c2 − 195
)

+ . . . ,

u4 = 1 − ε

2
Z4 (3Z4 − 22) + . . . ,

u5 = −Z5 + 5 +
ε

2

(

c2Z3
5 − 15c2Z2

5 + 74Z5c
2 − 40Z5 − 120c2 + 200

)

+ . . .

(28)

The eigenfrequencies, calculated from one-term and two-term asymptotic formulae,
see (25) and (27), versus their exact values, for which det M = 0 in (30), are presented
in the Table. Here and below ε = 0.01 and c = 1.

Comparison of exact and approximate eigenfrequencies
k Ω2

2 = εΩ2
20 Ω2

2 = ε (Ω2
20 + εΩ2

21) exact value Ω2
2

1 0.01 0.009883 0.009884

−1 0.03 0.02975 0.02975

Fig. 3 demonstrates a good agreement between two-term expansions (26) and (28)
and exact solution (29) for both k = ±1. In this figure the exact eigenforms are nor-
malized by constant U24 (U24 ≈ C40), see Appendix.

z/h

u/C4,0

1 2 3 4

0.2

0.4

0.6

0.8

1

0

z/h

-1

-0.5

0

0.5

1

u/C4,0

1 2 3 4

a b

Fig. 3. Asymptotic expansions (26), k = 1 (a) and (28), k = −1 (b) of the eigenforms of
a regular five-layered laminate at ε = 0 (dashed line) and ε = 0.01, c = 1 (dotted line)

together with exact solution (29) (solid line)
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5. CONCLUDING REMARKS

The developed methodology seems to be the initial stage in analysing low-frequency
vibrations of strongly inhomogeneous multi-layered structures. The next step, following
the evaluation of low-frequency thickness resonances, is concerned with the derivation
of multi-mode polynomial approximations of the original dispersion relations, similarly
to [6]. The final expected outcome should involve two-dimensional equations of motion
supplied with appropriate boundary conditions at the edges. The proposed approach
may be easily extended to layered anisotropic and pre-stressed structures, previously
investigated only for homogeneous and non-contrast configurations, e.g. see [16–18].
Certainly, various generalisations dealing with another scaling for problem parameters
are also possible.
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APPENDIX

The solution of equations (5) for a five-component laminate can be written as

ui = Ui1 sin (ΩiZi) + Ui2 cos (ΩiZi) , i = 1, . . . , 5, (29)

where Ui1 and Ui2 are constants. On substituting (29) into continuity conditions (9), (10) and
boundary conditions (8), we arrive at the eigenvalue problem

M · U = 0, (30)

where U = (U11, U12, U21, U22, U31, U32, U41, U42, U51, U52)
T, is an eigenvector and M is a

10 × 10 matrix with non-zero components given by

M12 = 1, M21 = sin(Ω1), M22 = cos(Ω1), M23 = − sin(Ω2b2), M24 = − cos(Ω2b2),

M33 = sin(Ω2(b2 + 1)), M34 = cos(Ω2(b2 + 1)), M35 = − sin(Ω3b3), M36 = − cos(Ω3b3),

M45 = sin(Ω3(b3 + 1)), M46 = cos(Ω3(b3 + 1)), M47 = − sin(Ω4b4), M48 = − cos(Ω4b4),

M57 = sin(Ω4(b4 + 1)), M58 = cos(Ω4(b4 + 1)), M59 = − sin(Ω5b5), M5 10 = − cos(Ω5b5),

M69 = sin(Ω5(b5 + 1)), M6 10 = cos(Ω5(b5 + 1)),

M71 = Ω1 cos(Ω1)ε, M72 = −Ω1 sin(Ω1)ε, M73 = −L1
2 cos(Ω2b2)Ω2, M74 = L1

2 sin(Ω2b2)Ω2,

M83 = Ω2 cos(Ω2(b2 + 1)), M84 = −Ω2 sin(Ω2(b2 + 1)), M85 = −L2
3 cos(Ω3b3)Ω3ε,

M86 = L2
3 sin(Ω3b3)Ω3ε, M95 = Ω3 cos(Ω3(b3 + 1))ε, M96 − Ω3 sin(Ω3(b3 + 1))ε,

M97 = −L3
4 cos(Ω4b4)Ω4, M98 = L3

4 sin(Ω4b4)Ω4, M10 7 = Ω4 cos(Ω4(b4 + 1)),

M10 8 = −Ω4 sin(Ω4(b4 + 1)), M10 9 = −L4
5 cos(Ω5b5)Ω5ε, M10 10L

4
5 sin(Ω5b5)Ω5ε.
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