

УДК 532.5:533.6.011.5

ГОМЭНТРОПИЧЕСКАЯ МОДЕЛЬ ОТРАЖЕНИЯ СФЕРИЧЕСКОЙ УДАРНОЙ ВОЛНЫ ОТ ЦЕНТРА СХОЖДЕНИЯ

И.А. Чернов

Саратовский государственный университет, кафедра вычислительного эксперимента в механике E-mail: chernov-ia@yandex.ru

Обсуждается частный случай движения имплозивной ударной волны по покоящемуся газу с нулевым давлением, но с переменной плотностью. Плотность описывается степенной зависимостью от расстояния до точки фокусировки ударной волны. Предлагается такой выбор показателя степени в этой зависимости, чтобы энтропия во всей области течения после прохождения ударной волны была постоянной (гомэнтропичность). При этом получается качественно другое по сравнению с классическим случаем Гудерлея – Ландау – Станюковича поведение температуры.

Ключевые слова: одномерные течения, автомодельные течения, сходящаяся ударная волна, гомэнтропическая модель.

Homentropic Model of Spherical Shock Wave Reflection from the Center of Convergence

I.A. Chernov

Saratov State University, Chair of Mechanics Computational Experiment E-mail: chernov-ia@yandex.ru

An implosive shock wave on a based gas the particular case of motion with zero pressure, but with variable density is discussed. The density is described by degree relation to distance up to a point of focusing of a shock wave. Such selection of an exponent in this relation that the entropy in all area of flow after passage of a shock wave was a constant (homentropic case) is offered. Thus qualitatively different behaviour of temperature in comparison with classical case Guderley – Landau – Stanjukovich is obtained.

Key words: one-dimensional flows, self-similar flows, converging shock wave, homentropic model.

ВВЕДЕНИЕ

Решение задачи о сходящейся к центру ударной волне (УВ) было получено Гудерлеем [1] и независимо от него Л.Д. Ландау и К.П. Станюковичем [2, 3]. Эта задача имеет большое прикладное значение, поскольку описывает один из способов создания экстремальных условий в малой области пространства. Существование автомодельных решений степенного вида предопределено наличием двухпараметрической группы подобных преобразований соответствующей системы уравнений газовой динамики идеального газа [4]. Эти решения описываются нелинейной системой обыкновенных дифференциальных уравнений (ОДУ) первого порядка, в которую входят три независимых параметра: $\gamma = C_p/C_v$ — показатель адиабаты Пуассона ($p/
ho^\gamma = {
m const}$); ω — показатель степени в автомодельном представлении плотности $\rho = \rho_0 t^{\omega} R(\xi)$ ($\rho_0 = \text{const}$); n — показатель автомодельности, где $\xi = r/(Kt^n)$ — независимая автомодельная переменная (t — время, r — пространственная координата, К — масштабная константа). Выбор показателя γ определяет свойства изучаемого газа. Нахождение *n* осуществляется решением специальной переопределенной краевой задачи названной системы ОДУ и находится на первом временном этапе (до момента фокусировки УВ). При выборе ω используют [1-3] модель сильной УВ (СУВ) и поскольку УВ распространяется по однородному газу, то полагают $\partial \rho(t,\xi) / \partial t = 0$, как до, так и после нее, тогда как $p(t,\xi) - \phi$ ункция двух независимых переменных t, ξ . В результате энтропийная функция $s = p/\rho^{\gamma}$ для течения после ударной волны является функцией лагранжевой координаты, то есть сохраняется вдоль траектории частицы — это свойство изэнтропии, но не гомэнтропии (постоянство энтропии в двумерной области (r, t) – англояз. термин).

Ниже обсуждается другая теоретическая возможность: показатель ω выбирается из условия $\partial s(t,\xi)/\partial t = 0$ — это оказывается (вместе с условием адиабатичности) достаточным условием гомэнтропии (соответственно гомэнтропическая УВ (ГУВ)). Это означает, что энтропия меняется скачком на ГУВ одинаково для всех жидких частиц.

В работе Хантера [5], посвященной проблеме схлопывания пустой сферической полости (каверны) в воде, для изучения эффекта сжимаемости среды использовалась газодинамическая модель течения с показателем $\gamma = 7$. Так как это течение начинается как гомэнтропическое, то автор использовал для определения давления уравнение состояния среды в конечной форме и рассмотрел систему двух дифференциальных законов: неразрывности и количества движения вместе с интегралом адиабаты. Этот подход распространялся и на вторую стадию течения, когда возникала отраженная УВ (от центра после схлопывании каверны). Это пример течения, в котором энтропия постоянна всюду (не меняется на УВ), то есть выполняется глобальная гомэнропичность. Работа интересна, в частности, тем, что в ней описана техника построения ударной волны, которая возникает после схлопывания полости.

В дальнейшем это изучение для других значений γ , а также при использовании кусочнопостоянных значений энтропии до и после отраженной УВ (гомэнтропическая модель) продолжил Лазарус [6]. Задача о каверне изучалась параллельно с задачей о сходящейся к центру УВ с последующим отражением от центра, но здесь автор использовал классическую модель СУВ.

Ниже повторяется соответствующий результат Лазаруса для частного случая $\gamma = 7/5$ и результаты сравниваются с новым расчетом при том же γ , но по гомэнтропической модели.

Если оставаться в рамках классического подхода, то представленный результат можно рассматривать как относящийся к частному случаю движения сильной УВ по покоящемуся газу с нулевым давлением, но с переменной по пространству начальной плотностью. Подобная трактовка используется в астрофизике [7].

Таким образом, цель работы — сравнение результатов расчета процесса схождения – отражения сферической УВ по двум моделям: классической [1–3] и по модели ГУВ для одного и того же показателя $\gamma = 7/5$.

1. ОСНОВНЫЕ УРАВНЕНИЯ

Изучаются одномерные неустановившиеся адиабатические течения идеального совершенного газа для случая сферической симметрии течения. Оно характеризуется скоростью u = u(r, t), плотностью $\rho = \rho(r, t)$ и квадратом локальной скорости звука c2 = c2(r, t), который с точностью до коэффициента совпадает с абсолютной температурой. Основные уравнения таковы:

$$\frac{d}{dt}\rho + \rho\frac{\partial}{\partial r}u + \frac{(\nu-1)\rho u}{r} = 0, \qquad \gamma\frac{d}{dt}u + \frac{\partial}{\partial r}c^2 + c^2\frac{\partial}{\partial r}\ln\left(\rho\right) = 0, \\
\frac{d}{dt}\left(\frac{c^2}{\rho^{\gamma-1}}\right) = 0, \qquad \frac{d}{dt} = \frac{\partial}{\partial t} + u\frac{\partial}{\partial r}.$$
(1)

Предполагая автомодельность, зададим искомые функции в форме ($m = 1/n, \eta = 1/\xi^n$):

$$t = K^{-m} \eta r^m, u = \frac{K^m r^{1-m} U \mathbb{1}(\eta)}{m}, \qquad \rho = \rho_0 r^w R \mathbb{1}(\eta), \qquad c \mathbb{1} = \frac{K^{2m} r^{2-2m} Z \mathbb{1}(\eta)}{m^2}.$$
(2)

Функции {U1, R1, Z1} называются автомодельными представителями (АП) (по r) функций {u, ρ , c2} соответственно. Они описывают поведение {u, ρ , c2} при фиксированном r в зависимости от t.

После подстановки заданного вида (2) в основную систему (1) получается три ОДУ для $\{U1(\eta), R1(\eta), Z1(\eta)\}$.

Эта система приводится к нормальному виду (разрешенному относительно производных), затем она записывается в виде автономной системы четырех ОДУ (без знаменателей в правых частях с независимой переменной *x* — искусственным временем)

$$\frac{d}{dx}Z1(x) = Z1(x) \left[(k_{111}U1(x) + k_{110})Z1(x) + k_{103}U1(x)^3 + k_{102}U1(x)^2 + k_{101}U1(x) \right],$$

$$\frac{d}{dx}U1(x) = \left[-1 + U1(x)\eta(x) \right] \left[(k_{311}U1(x) + k_{310})Z1(x) + k_{303}U1(x)^3 + k_{302}U1(x)^2 \right],$$

$$\frac{d}{dx}R1(x) = R1(x) \left[(k_{211}U1(x) + k_{210})Z1(x) + k_{202}U1(x)^2 + k_{201}U1(x) \right],$$

$$\frac{d}{dx}\eta(x) = m\gamma \left[-1 - 2U1(x)\eta(x) + U1(x)^2\eta(x)^2 - Z1(x)\eta(x)^2 \right] \left[-1 + U1(x)\eta(x) \right].$$
(3)

Коэффициенты k зависят от основных параметров задачи $\{m, w = \omega/n, \gamma, \nu = 1, 2, 3$ для плоского, цилиндрического, сферического случаев симметрии течения $\}$ и автомодельной независимой переменной η : $k_{110} = -\eta (2m - 2 - w) (\gamma - 1), k_{111} = 2\eta^2 \gamma (m - 1), k_{103} = \gamma \eta^2 (-\gamma + 3 - 2m + \gamma \nu - \nu), k_{102} = \gamma \nu (\gamma - 5 + 3m - 2\gamma \nu + 2\nu + \gamma m), k_{101} = -\gamma (\gamma m - \gamma \nu - 2 + m + \nu), k_{210} = -\eta (2m - 2 - w),$

 $\begin{aligned} &k_{211} = -\eta^2 \gamma w, \quad k_{201} \ + \ \gamma \left(-w + m - \nu \right), \quad k_{202} = \gamma \eta \left(1 - 2w + m - 2\nu \right), \quad k_{203} = \eta^2 \gamma \left(-1 + w + \nu \right), \\ &k_{310} = 2m - 2 - w, \ k_{311} = \gamma \eta \left(-\nu + m \right), \quad k_{302} = \gamma \left(m - 1 \right) k_{303} = -\gamma \eta \left(m - 1 \right). \end{aligned}$

Эта система удобна для расчетов и в том частном случае, когда приходится проходить точку с $\eta = 0$, что соответствует t = 0 (момент фокусировки УВ), которая не является особой точкой для системы (3).

Чтобы иметь возможность сравнения результатов с результатами классического подхода, рассмотрим наряду с (2) традиционное представление основных величин [8]

$$r = Kt^{n}\xi, \qquad u = nKt^{n-1}\xi U(\xi), \qquad \rho = \rho_0 t^{\omega} R(\xi), \qquad c2 = n^2 K^2 t^{2n-2} \xi^2 Z(\xi).$$
(4)

Отметим различие: здесь $U(\xi)$, $Z(\xi)$ — это фазовые переменные, тогда как { $U2 = \xi U(\xi)$, $Z2 = \xi^2 Z(\xi)$, $R2 = R(\xi)$ } — это АП (по t) искомых функций {u, ρ , c2}. Две функции $U(\xi)$, $Z(\xi)$ параметрически представляют решение ОДУ первого порядка для функции Z = Z(U) (фазовая плоскость {U, Z})

$$\frac{d}{dU}Z(U) = \frac{num}{den},\tag{5}$$

$$\begin{split} num &= -Z \left(5U\gamma + 2\gamma nU^2\nu - U^3\gamma n\nu - 2\gamma^2 nU^2\nu + U^3\gamma^2 n\nu + \gamma^2 nU\nu + \\ &+ Z(U)\gamma\omega - U\gamma^2 + U^2\gamma^2 + 2\gamma nZ(U) + 2\gamma nU - 5\gamma nU^2 + 3U^3\gamma n + \gamma^2 nU^2 - \\ &- U^3\gamma^2 n - 2\gamma nUZ(U) - \gamma nU\nu + 2Z(U) - Z(U)\omega - 2nZ(U) - 3U^2\gamma - 2\gamma \right), \\ den &= \left(-U^3n\gamma + U^2\gamma + nU^2\gamma + Z(U)\gamma nU\nu - U\gamma - 2Z(U) + Z(U)\omega + 2nZ(U) \right) (U-1). \end{split}$$

Качественный анализ этого ОДУ содержится в [8]. После того как решение Z = Z(U) найдено, следует осуществить две квадратуры для определения $\xi = \xi(U)$ и R = R(U).

Сравнивая два представления (2) и (4), легко получить соотношения:

$$\xi = \eta^{-n}, \qquad U(\xi) = \eta U 1(\eta), \qquad Z(\xi) = \eta^2 Z 1(\eta), \qquad R(\xi) = \frac{R1(\eta)}{\eta^{\omega}}.$$

Если в течении есть автомодельная ударная волна $\eta S = \eta 1 = \eta 2 = \text{const}$, то при ее переходе выполняются три закона сохранения — массы, импульса и энергии. Считая параметры с индексом 1 известными, находят параметры с индексом 2 (U1 = U11, Z1 = Z11, R1 = R11, ...; U2 = U12, ...) — для значений представителей сразу за скачком

$$U2 = \frac{\gamma U1^2 - U1^2 + 3U1\eta 1 - \gamma U1\eta 1 - 2\eta 1^2 + 2Z1}{\gamma U1 + U1 - \gamma \eta 1 - \eta 1},$$

$$R2 = \frac{R1 \left(\gamma \eta 1^2 + \gamma U1^2 - 2\gamma U1\eta 1 + \eta 1^2 + U1^2 - 2U1\eta 1\right)}{\gamma \eta 1^2 - \eta 1^2 + 2Z1 + \gamma U1^2 - 2\gamma U1\eta 1 - U1^2 + 2U1\eta 1},$$

$$Z2 = \frac{1}{(\gamma U1 + U1 - \gamma \eta S - \eta S)^2} \left(12\gamma^2 U1^2 \eta 1^2 - 12\gamma U1^2 \eta 1^2 - \gamma^2 U1^2 Z1 + 6\gamma \eta 1^2 Z1 - 2\gamma Z1^2 - 2\gamma \eta 1^4 + 6\gamma U1^2 Z1 + 8\gamma U1\eta 1^3 + 2U1\eta 1Z1 - 12\gamma U1\eta 1Z1 + 2\gamma^2 U1\eta 1Z1 - 8\gamma^2 U1^3 \eta 1 - 8\gamma^2 U1\eta 1^3 - -\gamma^2 \eta 1^2 Z1 + 2\gamma^2 U1^4 - 2\gamma U1^4 - U1^2 Z1 - \eta 1^2 Z1 + 2Z1^2 + 2\gamma^2 \eta 1^4 + 8\gamma U1^3 \eta 1).$$
(6)

Если УВ распространяется по неподвижному газу с $\{U10 = 0, Z10 = 0, R10 = \rho_0\}$, то позади нее должно быть

$$U20 = \frac{2\eta 1}{\gamma + 1}, \qquad Z20 = \frac{2\gamma\eta 1^2 (\gamma - 1)}{(\gamma + 1)^2}, \qquad R20 = \frac{\rho_0 (\gamma + 1)}{\gamma - 1}.$$

Введем в рассмотрение энтропийную функцию $s = \frac{p}{\rho^{\gamma}}$. Вдоль траектории частицы *s* имеет постоянное значение в силу третьего уравнения из (1). Для гомэнтропического потока эта постоянная одна для всех траекторий. Выражая *s* в автомодельном случае через (t,ξ) с использованием формул (4), получим $s = s_0 t^{\omega(1-\gamma)+2n-2} S(\xi)$, где $s_0 = \rho_0^{1-\gamma} n^2 K^2$, $S = \xi^2 R(\xi)^{1-\gamma} Z(\xi)$. Условием того, что *s* явно не зависит от времени, является равенство

$$\omega = \frac{2\left(n-1\right)}{\gamma-1}.$$

Если предполагается гомэнтропичность течения в какой-то области, то это означает использование уравнения адиабаты Пуассона, которая определяет квадрат скорости звука через плотность. Вместо основных уравнений (1) можно использовать первые два из них вместе с интегралом адиабаты, при этом значение двух разных постоянных в интеграле вычисляется по (6).

2. ПОСТАНОВКА ЗАДАЧИ

Чтобы описать изучаемое явление, полезно рассмотреть плоскость (r,t) (рис. 1). Отрицательному времени соответствует фаза схождения УВ к центру. УВ1 изображает ее траекторию, ПХ — траекторию предельной характеристики, УВ2 — отраженной УВ. Каждая из них описывается обобщенной

параболой $\eta = \text{const.}$ Полуплоскость r = 0 разделена на 4 подобласти, обозначенные цифрами 1–4. Подобласть 1 изображает покоящийся газ, траектория частицы — пунктирная вертикальная прямая, идущая вверх.

После пересечения ее с УВ1 возникает движение частиц к центру фокусировки r = 0 (ЦФ). Подобласть 2 является зоной влияния на УВ1: ПХ — последняя из центростремящихся характеристик, приходящих на УВ1. УВ2 изображает отраженную от ЦФ ударную волну, которая идет по газу, движущемуся навстречу. Рис. 1 может рассматриваться как гипотетическая картина явления в малой окрестности ЦФ, но в данном случае это также результат расчета по ГУВ модели.

Математическое моделирование включает:

 обоснование факта использования автомодельных решений (2);

2) описание краевой задачи для соответствующей системы ОДУ как автомодельной задачи второго рода [8, 9], в которой показатель автомодельности определяется методом пристрелки из условия аналитического прохода известной интегральной кривой уравнения (5) через особую точку на фазовой плоскости, являющейся образом ПХ. На рис. 2 показаны две кривые (1 - по классической модели и 2 - по ГУВ) для $\gamma = 1.4$. Особая точка ПХ лежит на звуковой линии (ЗЛ);

3) построение ударного перехода (см. рис. 2) от точки УВ2к точке УВ2+ осуществляется таким образом, чтобы фазовая траектория могла пройти из точки УВ+ вверх к особой точке $(U = (2 - 2n - \omega) / (n\gamma), Z \rightarrow +\infty)$, которая является седлом и приход в которую обеспечивает продолжимость течения до точки r = 0 при $t \rightarrow +\infty$ для подобласти 4 рис. 1.

Дополнительные детали по методике расчетов есть в [7-9].

Рис. 2

3. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Первым этапом построения решения является определение показателя автомодельности при заданных γ , ω и нахождение АП для трех параметров течения в подобласти 2 рис. 1. Поскольку автомодельное решение определено с точностью до масштабной постоянной K в (2), это позволяет положить $\eta = -1$ на ПХ (такова предварительная нормировка). Далее можно построить решение системы (3) в виде степенных рядов по ($\eta + 1$) с учетом того, что нас интересует окрестность одной (с меньшим значением Z) из двух особых точек, которые соответствуют ПХ. Сделав небольшое отступление от $\eta = -1$ в сторону уменьшения η , можно получить начальные условия для интегрирования системы

(3) при выбранном $\gamma = 7/5$, $\omega = 0$ и некотором пробном значении *n*. Решая задачу Коши для системы в сторону уменьшения η , следят за поведением соответствующей фазовой траектории на плоскости (U, Z) с тем, чтобы попасть в известную неособую точку — образ УВ1+. Такое попадание возможно лишь при определенном подборе *n* и определенном размере интервала интегрирования по *x*. Так были получены первая и вторая строки в таблице и известное значение n = 0.7171745.

Модель	Характерная точка	η	<i>U</i> 1	R1	<i>Z</i> 1
CYB $\omega = 0$ $n = 0.7171745$ $\gamma = 7/5$	УВ1+	-1.0	-5/6	6.0	7/36
	ПХ-	-0.845089	-0.773168	8.49174	0.1682177
	ПХ+	-0.845065	-0.773182	8.49062	0.168228
	УВ2-	2.68841	-0.287893	64.3086	0.144550
	УВ2+	2.68841	0.0794383	145.062	0.214518
		16.7345	0.0112545	54.4395	0.185998
	$\eta \rightarrow +\infty$	50.03389	0.00373867	31.5279	0.172507
	УВ1+	-1.0	-5/6	6.0	7/36
ГУВ	ПХ-	-0.821996	-0.762431	6.95182	0.206241
$\omega=0.7900640$	ПХ+	-0.821976	-0.762424	6.95178	0.206242
n = 0.8419872	УВ2-	1.44198	-0.158958	18.3459	0.304056
$\gamma = 7/5$	УВ2+	1.44198	0.254178	35.5986	0.410791
		16.0763	0.0195063	4.36336	0.177409
	$\eta \rightarrow +\infty$	50.4683	0.00619525	1.76270	0.123458

Аналогичное вычисление зависимости $n = n(\gamma)$ проведено для модели ГУВ, сравнение двух графиков (кривая 1 по модели СУВ, 2 — по ГУВ) дано на рис. 3.

Перейдем к описанию второго этапа построения решения. Используя найденные разложения для АП в окрестности $\eta = -1$ (их коэффициенты стали числами), находят начальные условия в задаче Коши для построения решения в подобласти 3 рис. 1. Интегрируют систему (3) в сторону увеличения η , так чтобы пройти точку с $\eta = 0$. Далее интегральная кривая на плоскости (U, Z) выходит на ЗЛ, где $Z = (U - 1)^2$, в точке, отличной от ПХ. Это означает предельную линию на (r, t)-плоскости, что недопустимо. Возникает задача определения местоположения отраженной УВ (см. п. 3 вышеприведенного математического моделирования) с тем, чтобы с помощью скачка УВ2- — УВ2+ перепрыгнуть ЗЛ.

В таблице приведены характерные точки, полученные при интегрировании системы ОДУ для УВ1+, ПХ, УВ2-, УВ2+ и

больших значений η . Расчеты были проведены для 2-х моделей (СУВ и ГУВ). Их использование позволяет легко воспроизвести АП и построить параметры соответствующих течений. В таблице была проведена вторая нормировка, так что значению УВ1 соответствует $\eta = -1$.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 4–7 приведены АП (по r) для скорости частиц, плотности, квадрата локальной скорости звука и энтропийной функции параллельно для 2-х обсуждаемых моделей. Всюду кривые 1 относятся к классической СУВ-модели, 2 — к ГУВ. Напомним, что эти функции при изменении η от $-\infty$ до $+\infty$ описывают поведение соответствующего параметра при фиксированном r и изменении t от $-\infty$ до $+\infty$.

На рис. 4 вертикальным пунктиром изображены УВ1 и УВ2. Область между УВ+ и ПХ- изображена утолщенной линией. Отметим, что сила (по U1) отраженной УВ почти в 2 раза меньше, чем падающей. Отраженная УВ по модели ГУВ возникает раньше, чем по СУВ. Качественное поведение АП(U1) одинаковое.

На рис. 5 показан $A\Pi(R1)$ (по r) для плотности. Сила (по R1) отраженной УВ по СУВ-модели более чем в 3 раза превосходит по ГУВ-модели. Качественное поведение $A\Pi(R1)$ одинаковое.

На рис. 6 показан АП(Z1) (по r) для квадрата локальной скорости звука (температуры с точночтью до постоянного множителя). Кривая 1 показывает, что температура в фиксированной точке rподскакивает на приходящей VB1, затем начинает падать до минимума, затем слегка возрастает, подскакивает в отраженной VB2 с тем, чтобы уменьшаться со временем. Таким образом, АП температуры — немонотонная функция в интервале между приходящей и отраженной VB. Это означает наличие характерного размера. Кривая 2 имеет другое качественное поведение: температура продолжает расти в интервале между двумя VB. Это можно объяснить тем, что газ адиабатически сжимается, так как частицы двигаются к ЦФ после сходящейся VB. После отраженной VB газ адиабатически расширяется, что приводит к его охлаждению.

На рис. 7 показаны $A\Pi(S1)$ (по r) для энтропийной функции. Кривая 1 после УВ1 монотонно и сильно убывает до появления УВ2, что представляется качественно правдоподобным, поскольку частицы, которые в начальный момент располагались ближе к ЦФ, проходят через более сильную УВ и получают большее значение энтропии позади нее. За отраженной УВ2 наблюдается монотонное возрастание энтропии, что не противоречит высказанному объяснению, так как скорость частиц в зоне 4 рис. 1 меняет знак. Кривая 2 демонстрирует кусочно постоянные значения S1, что соответствует гомэнтропической модели.

ЗАКЛЮЧЕНИЕ

Классическое решение [1-3] — это решение хорошо поставленной задачи с краевыми и начальными условиями. Такая задача является полностью автомодельной [10]: основные уравнения, начальные и граничные условия инвариантны относительно группы подобных преобразований. Решение такой задачи дает локальную асимптотику (фазу схождения УВ к ЦФ) и от него нельзя требовать правильного описания второй фазы (отражения УВ от ЦФ). Физически интересными могут оказаться частично автомодельные решения (уравнения инвариантны, но часть условий — нет). Иногда такие решения выступают в роли промежуточных асимптотик изучаемого явления, они, в частности, способны «забывать» начальные условия. Приведем простой пример: если в лужу бросить прямоугольный кирпич, то от него почти сразу пойдет волна в виде расходящегося круга, которая описывается частично автомодельным решением, «забывшим» о «прямоугольных» начальных условиях. Возможно, что представленное новое решение является промежуточной асимптотикой для схождения – отражения УВ по газу постоянной начальной плотности. Для окончательного вывода требуется сравнение с результатами анализа асимптотик в конечноразностных решениях соответствующих задач.

Автор благодарит В.С. Кожанова за помощь в оформлении статьи.

Библиографический список

1. *Guderley, G.* Starke kugelige und zylindrische Verdichtungsstöe in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse / G. Guderley // Luftfahrtforschung. – 1942. – B. 19, lfg. 9. – S. 302–312.

2. Ландау, Л.Д. Теоретическая физика. Т. VI. Гидродинамика / Л.Д. Ландау, Е.М. Лифшиц. – М.: Физматлит, 2003. – 736 с.

 Станюкович, К.П. Неустановившиеся движения сплошной среды / К.П. Станюкович. – М.: Наука, 1971. – 856 с.

4. *Овсянников, Л.В.* Групповой анализ дифференциальных уравнений / Л.В. Овсянников. – Новосибирск: Изд-во СО АН СССР, 1962. – 236 с.

5. *Хантер, К.* О захлопывании пустой полости в воде / К. Хантер // Механика: период. сб. пер. иностр. ст. – 1961. – № 3 (67). – С. 77–100.

6. *Lazarus, R.B.* Self-Similar Solutions for Converging Shocks and Collapsing Cavities / R.B. Lazarus // SIAM J. Numer. Anal. – 1981. – V. 18, iss. 2. – P. 316–371.

7. Зельдович, Я.Б. Физика ударных волн и высокотемпературных гидродинамических явлений / Я.Б. Зельдович, Ю.П. Райзер. – М.: Наука, 1966. – 688 с.

8. *Седов, Л.И*. Методы подобия и размерностей в механике / Л.И. Седов. – М.: Наука, 1967. – 428 с.

9. Брушлинский, К.В. Об автомодельных решениях некоторых задач газовой динамики / К.В. Брушлинский, Я.М. Каждан // УМН. – 1963. – Т. 18, вып. 2 (110). – С. 3–23.

10. Баренблатт, Г.И. Подобие, автомодельность, промежуточная асимптотика / Г.И. Баренблатт. – Л.: Гидрометеоиздат, 1978. – 207 с.