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AnHoTtanusa. HccienoBanel MoGU/IbHBIE POOOTHI CO CIOKHBIM 60PTOBEIM 060pynoBaHueM. [lokasa-
HO, uTO GOpTOBOE 06OpyHOBaHHE I/ obecreyeHHs] TpeOyeMbIX MapaMeTPOB HANEXKHOCTH JOJIXK-
HO 00/1alaThb OTKA30yCTOMYMBLIMHM CBOHCTBaMH, a /s NPOEKTHPOBAHHS TaKOro 00OpPYAOBaHUS
HeoOXoaMMa ajleKBaTHAasi MOJeslb OLlEHHBAHUs ero HaleXKHOCTH. PaccMoTpeH Moaxon, CBf3aHHBIH
C CO3JaHHEM MOJEeJIM, OCHOBAaHHOH Ha TEOpPUH MNapaJlelbHBIX T0JYMapKOBCKMX mporeccoB. Ha
TMepBOM 3Tare MOJEJNHPOBAHUS ONpeNessieTCsl CPOK CJIYyKObl eIHHCTBEHHOTO 6J10Ka B CJI0KHOM
LIMKJIe YCTpaHeHHsl HeucrpaBHOCTeH. [losydeHbl 3aBUCHMOCTH JISi pacueTa BpeMeHHbIX HHTepBa-
JIOB U BeposiTHOCTeH OJIy>KIaHHUS 110 OOBIYHBIM MOJYMapKOBCKHUM IpolieccaM /st OOLIero ciyyasi.
Ha BTOpOM 3Tame oGbIUHBIE TPOLIECCH BKJIOYAIOTCS B MapaJsiesbHbld, KOTOPbIH HUMHTHPYET CPOK
cay>kK0bl 060pyIOBaHHUS B LieJOM. [lJIs1 yIpOLIeHHs] pacueToB MpeasoxKeHa UU(poBast MO/ b HEUC-
TPaBHOCTEH C HCIMOJb30BAHMEM IPOLEAYPHl MOCTPOeHHs rUcTorpaMm. [lokaszaHo, 4TO KOJIHUECTBO
BBIOOPOK T103BOJISIET KOHTPOJIMPOBATh KaK TOYHOCTb, TaK W BBIUHCJHUTENbHYIO CJOKHOCTb MpolLie-
LypBl pacueTa MapaMeTpPoOB HANEKHOCTH.
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Introduction

Mobile robots that execute target tasks in an aggressive environment are currently
widely used in industry, anti-terrorism operations, technology disaster consequences
elimination, military sphere, etc. [1-3]. The impact of the environment leads to the
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fact that the robot’s onboard equipment reliability indicator, namely mean time between
failures, falls sharply, which reduces the robot’s lifetime in general. To increase the
lifetime, the planned redundancy is introduced into the equipment. Since the reliability
parameters [4-6] of an individual block are limited, this problem can be solved only
systematically, using redundant fault-tolerant structures [7-9]. For proper planning the
redundancy it is necessary to simulate the failure-recovery process of both only units
and equipment as a whole preliminary. The general approach to modeling the reliability
of a system is based on the theory of Markov [10,11] or semi-Markov [12-15] processes
which allow describing a single unit of equipment lifetime. Using more rough Markov
models instead of semi-Markov ones, we downgrade the accuracy of the simulation
procedure. Other approaches to simulation suppose the application of the Monte-Carlo
method [16], the chaos expansion method [17], the graph theory [18,19] but all
approaches are insufficient, due to the fact that they do not take into account that in
redundant structures a competition effect arises. Below it is proposed to use discrete
semi-Markov models instead of Markov models to describe the competition in fault-
tolerant assemblies in which accuracy can be controlled by changing the number of
samples at distribution densities. Therefore, it is necessary to develop a model whose
accuracy can be estimated and increased/decreased in accordance with the solvable
reliability problem, which explains the necessity and relevance of this study.

1. The approach to simulation of fault-tolerant systems

Mobile robot equipment, in which the fault-tolerance principle is realized, may be
considered as M units, operated in parallel [20]. Fault/recovery processes in assembly
units develop in parallel, so such an abstraction as M-parallel semi-Markov process [21]
may be obtained to describe the reliability of the assembly as follows:

® = [,ula ceey Him, 7MM] :

where fi,,, 1 < m < M is the ordinary semi-Markov process [12-14], which is charac-
terized with a set of states A,, = {aoum), .-, @jom), --» @sem) } and a semi-Markov matrix

R (t) = [Rjm) hm) (1))
fim = {Am, b (1)},

where ¢ is the time aq(,); simulates the start of m-th unit exploiting, when it is surely
able to work; aj,) is the absorbing state, which simulates the fully destroyed unit;
ajm), 1(m) < j(m) < J(m) simulate other physical states (able to work, short-time
failures, under recovering, etc.);

h(t) =D ® f,.(t); (1)

where p,, = [pjim)kem)] and £, (6) = [fim)eon)(t)] are [Jn, 4 1] x [Jy, + 1] stochastic
matrix and matrix of pure time densities, correspondingly.

Semi-Markov matrix (1) has the following features: elements of the matrix h,,(¢)
zero column, J,,-th row and diagonal elements are equal to zeros. Physically it means,
that any unit cannot return to the beginning of exploiting, cannot return from the
state of complete destruction and cannot switch to the same state, as before switching.
Weighted time densities hj(mn)km)(t) describe both sojourn time in the state a;(), and
prior probabilities of switching into conjugative states. Due to there is the only absorbing
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state in p,,, for elements of rows from 0,,-th till [J,,_;]-th the next expression is true:

Z / tydt =1, 0(m) < j(m) < J(m).

k(m)=1(m

Both probabilities p;(m) k@) and parameters of time densities fjunyrm)(t), such as
expectations and dispersions, defining fault/recovery process in m-th unit, depend on
the material, of which the element is made, quality of element manufacturing and
assembling, exploiting conditions, side effects, and so on, and define mobile robots’
reliability in common.

From the common problem of reliability estimation digitizing may be set off three
tasks, which one should fulfill:

— the estimation of the time till failure (random walk from ag(y till asim));

— the estimation of the time and transition probability of random walk from arbitrary
Aj(m) 7 Qom) 7 @y till arbitrary agen) # aomm) # ajor

— the estimation of the time and probability of returnmg to ajim) # aomm) # i)

In general, time till failure may be defined as follows [22]:

Sotmy.amy (1) = Z{L )} Gm (2)

where ]é%m) is the [J(m) + 1]-size row-vector, in which 0(m)-th element is equal to one,

and other elements are equal to zeros; If(m) is the [J(m) + 1]-size column-vector, in
which J(m)-th element is equal to one, and other elements are equal to zeros; L and
L~! are direct and inverse Laplace transforms, correspondingly. To solve the second
task one should transform h,,(t) as follows

h,.(t) — k! (t).

During the transformation, the only restriction imposed onto wandering trajectories is
that neither a;,,), nor ax(n) state processes should fall twice. To form h,,(t)" with such
properties in semi-Markov matrix h,,(t) all elements of j(m)-th column and k(m)-th
row should be replaced by zeros. Elements h;n)m)(t) should be recalculated as follows:

Wit (0 =~ ) < im), jm) k() < J(m), - im) # kom).

Z Di (m) ) k (m)

k(m)=0(m),
k(m)#j(m)

Stochastic summation of densities, formed on all possible wandering trajectories,
gives the following expression:

By oy (8) = Ly - L7 [Z{L[hm(t)’]}w] Iy, (3)

where Iﬁm) is the row-vector, in which j(m)-th element is equal to one, and other
elements are equal to zeros; Ikc(m) is the column-vector, in which k(m)-th element is
equal to one, and other elements are equal to zeros.
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In the semi-Markov process h,,(t)" there are, as a minimum, two absorbing states,
namely ay(m) and a;u,), so the group of events of reaching from is not full, and in

common case hj(m k(m)(t) is weighted, but not pure density. The state ay(y) from the
state a;(,,) may be reached with probability [23]

~/ o 71
%wmm—z m) k() (1)

and pure time density of wandering from the state a;(,,) to the state a;,,) may be defined

as follows:
f{( Lk )Q)_h/—m)@) (4)
e Bomy om) (£)

when solving the third task, one should execute the following transformation:
o (t) = o (1),

where one row and one column are added to the matrix; complementary, [J(m) + 1]-th
row should be fulfilled with zeros; j(m)-th column at first should be carried over the
complementary -th column, and then it should be fulfilled with zeros. Stochastic sum-
mation of densities, formed on all possible wandering trajectories, gives next expression:

- Z{L[hm(t)”]}“’] Tjmy 41, (5)

where Il ) is the [J(m) + 2]-size row-vector, in which j,,-th element is equal to one,

n
15ty omy (8) = Loy

and other elements are equal to zeros; If(m)ﬂ is the [J(m) + 2]-size column-vector, in
which [J(m) + 1]-th element is equal to one, and other elements are equal to zeros.
In the semi-Markov process h, (¢) there are two absorbing states, namely a;(,) and
aj(m)+1, S0 the group of events of reaching a ()41 from a;(,, is not full and in common
case ﬁ;’(m)"](m)ﬂ(t) is weighted, but not pure density. The state a ()41 from the state
ajm) may be reached with probability

D) s (my+1 = /0 3m). )1 (1) dt
and during pure time density

h” J(m)+1 (t)

£11
ooy (£) = (6)
3(m),J(m) p;‘/(m),J(m)H(t)

2. Sampling of time densities

As it follows from (2), (3), (5), expressions for calculation of densities fo(m),J(m)(zﬁ),
fj’.(m) (1), f” J(my+1(t) are too complicated to use them for analysis of robotic system
reliablhty, due to the fact there is so-called “competition” [20, 21] for failure among
equipment units. So, to investigate the reliability of the robotic system as a whole, one
should use any approach to densities mentioned.

Let us consider generalized density

Pm(t) € {fO(m),J(m)(t)7 Ty em) (), ~]”(m) Jmy+1 (D)}
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In the most general case ¢,, () is a continual function with the next common properties:

O < tmin < a‘rg[gbm(t)] < tmax < oQ.

Time density ¢,,(t) may be represented as a histogram. For this purpose domain
[tmin, tmax] Should be divided into X intervals, 0 < ¢ < 7, ...,701 < t < T,
oTx-1 <t < oo, as it is shown in the Figure. For simplification of the model, it
is advisable to do both borders 7, between histogram intervals and sampling points 6,
representing intervals, uniform for all 1 <m < M.

ol 61 06, ... 0, 0 x
T \X\w
Tom,
(0
A, AN
Tcm,l i \
Tm,x
To T T—1 Ty Ty—1 Ty t
Figure. Time density sampling
Histogram intervals width D is as follows:
A= 177X (7)

X—-2

where X is the quantity of histogram intervals; 7 and 7x_; are the right border of the
first interval and the left border of the X-th interval.
Values of intervals are equal to

r(x)
Tm,x = / qu(t) dt? (8)
I(z)
where [(x) < t < r(z) are left and right limits of integration interval,
[(z) ={m + A(x —2)}, when 2 <z <X,
r(z) ={n+A(x—-1)}, whenl<z<X-1.

Sampling points, representing histogram intervals, are as follows

O, =T, — —.

2

In a discrete model, every interval of the histogram is represented as weighted
shifted degenerative distribution law, so the time density of the described histogram is
as follows:

Om(t) = Tona - O(t = 0,), (9)
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where §(...) is the shifted Dirac J-function;m,, . is the weight of Dirac function:

X
g Tz = L.
r=1

The error of digitizing may be estimated as follows:

1(0)

X r(x) )
= Gunyd+Y / (6o (£) — T dt + / o(t) dt.
=1 7 Uz) T(K)

0

One would admit that there are no restrictions, imposed on ¢,,(t), besides
arg[¢m,(t)] = 0. Expression (9) satisfies this restriction so process p still remains the
semi-Markov one.

3. Interaction in fault-tolerant system

Mobile robot redundant units, assembled into the fault-tolerant structures during
operation, compete for failure. The result of this competition is the failure of m-th unit
the first or not the first. The lifetime of AM-units redundant structure is as follows
[20,21]:

M
d{t =TT [t = @ ()]}
Du(t) = —"=— : (10)
where ®,,(t) is the distribution function;
®t) = [ n(6)ds (1)

The weighted time density, the probability, and the pure time density of winning the
competition for failure by the m-th unit are as follows

1—at)], m(m)= /Owﬁwm@)dt, Do) = LB gg)

Tv,m

D () (1)

s

where 9,,,(t) is the weighted time density; =, ,, is the probability; ¢,.,(t) is the pure
time density of winning by the m-th unit.

When ¢,,(t) is transformed into its discrete analog ¢,,(t), as it is shown at (9), the
time distribution function is transformed to ®,,(t):

~ t ~ X
Bo(t) = / €)= T 1(t — ), (13)

where 7(t — 6,,) is the shifted Heaviside function.
Dependence (12) may be transformed into the sequence of samples as follows:

&)m(t) = Pp(t) = Z[(Z Timy) - 0(t — 0.)], (14)
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where Y 7,,, is the nomination of the function ®,,(t) sample at the point 6.
y=1
Accordingly, 1 — @,,(¢) function may be transformed into discrete form as follows:

- Z Zﬂmy O(t — 6a)].

z=1 y=x+1

Combinations of ¢,,(t) and [1 — ®,,(t)] permit us to construct the discrete analog 1,,,,(t)
of function (10). It is necessary to admit, that when time intervals are described with
continual functions ¢,,(¢),1 < m < M, then there may be only one winner in the com-
petition(10) due to the fact, that probability of competition draw, even in the case of
paired races, is too small in comparison with probabilities of winning by one of the
participants. When time intervals are described with discrete distribution function, a
draw effect emerges with probabilities, comparable with winnings and losing probabili-
ties due to the fact, that time interval 7,_; < ¢ < 7, may include number of events. To
determine possible combinations ¢,,(t) and [1 — ®,,(¢)] it is necessary to consider data,
which includes M binary digits:

where inside triangle brackets there is the code, obtained by means of Cartesian expo-
nentiation to M-th degree the set [0,1]; n(m) € [0, 1] is binary digit 0 < n < 2".
All codes n may be gathered onto set IV, which is divided onto subsets N;:

N = No, ..., Nj, ..., Nus,
where N, is the subset of codes, which include [ “nulls” and M-l “ones”. In turn,

Nl = {nl(M,l)a coes The(ML) 5 <+ o5 nC(M,l)}7

where ne) is ¢(M,1)-th M-digits code, including ! “nulls” and M — [ “ones”; C'(M,1)
is common quantity of such codes; ¢(M,!) is the index, which numerates codes in the
set N;;

M!
C(M,l) = m,
neay) = ([l c(m, L)], ..., n[m, c(m, L)], ..., n[M, c(m, L)]),
n[M, c(m, L)] €0, 1]. (15)

The function of two parameters, namely, time and m-th code digit state n[m,c(M,1)]
should be introduced to describe distribution:

W{t,n[m, (M, D]} = {¢pm(t) when n[m,c(M,1)] = 0}. (16)

A competition outcome, alike (11), when [ units of M failure during the time interval
T,—1 <t < 7, may be expressed as

M C(M])

z/l/M Z H @D{t nlm, c(M,1)]}.

m=1c(M,l)=
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The probability and pure discrete time distribution and mean time of I/M units simul-
taneous failure are as follows:

Dy a/n(t)

Tyl /M

7~Tu,l/M=/ Do (R)dt,  Guim(t) = ; 7~Tu,l/MZ/ t-Tom(t)dt.
0 0

Let some robot fault-tolerant assemble to be workable until among all M units at least
one unit stays “alive”. There are 2~ combinations of reaching unworkable state, e.g.,
3-units assemble may fail as 1+1+1, 142, 241, 3. Analysis of every combination gives
different probabilities and pure time densities for evaluation of assemble “lifetime”. So it
is necessary to evaluate time till failure for every combination, and then stochastically
summarize them.

4. Digital calculation of reliability parameters

The above theoretical calculations follow the digital method of fault-tolerant system
reliability parameters estimation.

1. Working out the model of single unit failure/recovery process and calculation time
density till failure of this unit accordingly (2), (4), (6).

2. Transformation of time density into discrete form accordingly (7), (8).

3. With use of the formulae (13), (14), (15), (16), calculation discrete distribution of
assembling “lifetime” for different combinations of units failures/recoveries.

4. Estimation of reliability parameters of the fault-tolerant assembles as a whole.

Conclusion

As a result, the task of designing fault-tolerant assemblies was proposed to be divided
into two stages:

— development of conventional semi-Markov models of individual units, and conver-
sion it to the discrete form;

— analysis of a parallel discrete semi-Markov process to obtain the reliability param-
eters of equipment as a whole.

The proposed approach allows us to create a model of a redundant system with any
degree of accuracy, to develop a method for optimizing a fault-tolerant system based on
the approach of a discrete model. Further research in this area may be aimed at modeling
many practical redundant systems with complex interactions between components and
complex “life cycle” algorithms.
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