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Abstract. Mobile robots with complex onboard equipment are investigated in this article. It

is shown that their onboard equipment, for providing the required reliability parameters, must

have fault-tolerant properties. For designing such equipment it is necessary to have an adequate

model of reliability parameters evaluation. The approach, linked to the creation of the model,

based on parallel semi-Markov process apparatus, is considered. At the first stage of modeling,

the lifetime of the single block in a complex fault-recovery cycle is determined. Dependences for

the calculation of time intervals and probabilities of wandering through ordinary semi-Markov

processes for a common case are obtained. At the second stage, ordinary processes are included

in the parallel one, which simulates the lifetime of the equipment lifetime as a whole. To simplify

calculations, a digital model of faults with the use of the procedure of histogram sampling is

proposed. It is shown that the number of samples permits to control both the accuracy and the

computational complexity of the procedure for calculating the reliability parameters.
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Аннотация. Исследованы мобильные роботы со сложным бортовым оборудованием. Показа-

но, что бортовое оборудование для обеспечения требуемых параметров надежности долж-

но обладать отказоустойчивыми свойствами, а для проектирования такого оборудования

необходима адекватная модель оценивания его надежности. Рассмотрен подход, связанный

с созданием модели, основанной на теории параллельных полумарковских процессов. На

первом этапе моделирования определяется срок службы единственного блока в сложном

цикле устранения неисправностей. Получены зависимости для расчета временных интерва-

лов и вероятностей блуждания по обычным полумарковским процессам для общего случая.

На втором этапе обычные процессы включаются в параллельный, который имитирует срок

службы оборудования в целом. Для упрощения расчетов предложена цифровая модель неис-

правностей с использованием процедуры построения гистограмм. Показано, что количество

выборок позволяет контролировать как точность, так и вычислительную сложность проце-

дуры расчета параметров надежности.

Ключевые слова: надежность, отказ, отказоустойчивость, полумарковский процесс, вы-

борка, моделирование, точность, вычислительная сложность
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Introduction

Mobile robots that execute target tasks in an aggressive environment are currently
widely used in industry, anti-terrorism operations, technology disaster consequences
elimination, military sphere, etc. [1–3]. The impact of the environment leads to the
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fact that the robot’s onboard equipment reliability indicator, namely mean time between
failures, falls sharply, which reduces the robot’s lifetime in general. To increase the
lifetime, the planned redundancy is introduced into the equipment. Since the reliability
parameters [4–6] of an individual block are limited, this problem can be solved only
systematically, using redundant fault-tolerant structures [7–9]. For proper planning the
redundancy it is necessary to simulate the failure-recovery process of both only units
and equipment as a whole preliminary. The general approach to modeling the reliability
of a system is based on the theory of Markov [10,11] or semi-Markov [12–15] processes
which allow describing a single unit of equipment lifetime. Using more rough Markov
models instead of semi-Markov ones, we downgrade the accuracy of the simulation
procedure. Other approaches to simulation suppose the application of the Monte-Carlo
method [16], the chaos expansion method [17], the graph theory [18, 19] but all
approaches are insufficient, due to the fact that they do not take into account that in
redundant structures a competition effect arises. Below it is proposed to use discrete
semi-Markov models instead of Markov models to describe the competition in fault-
tolerant assemblies in which accuracy can be controlled by changing the number of
samples at distribution densities. Therefore, it is necessary to develop a model whose
accuracy can be estimated and increased/decreased in accordance with the solvable
reliability problem, which explains the necessity and relevance of this study.

1. The approach to simulation of fault-tolerant systems

Mobile robot equipment, in which the fault-tolerance principle is realized, may be
considered as M units, operated in parallel [20]. Fault/recovery processes in assembly
units develop in parallel, so such an abstraction as M -parallel semi-Markov process [21]
may be obtained to describe the reliability of the assembly as follows:

µ = [µ1, ..., µm, ..., µM ] .

where µm, 1 6 m 6 M is the ordinary semi-Markov process [12–14], which is charac-
terized with a set of states Am =

{

a0(m), ..., aj(m), ..., aJ(m)

}

and a semi-Markov matrix
hm(t) =

[

hj(m),k(m)(t)
]

;

µm = {Am,hm(t)},

where t is the time a0(m); simulates the start of m-th unit exploiting, when it is surely
able to work; aJ(m) is the absorbing state, which simulates the fully destroyed unit;
aj(m), 1(m) 6 j(m) < J(m) simulate other physical states (able to work, short-time
failures, under recovering, etc.);

hm(t) = p⊗ fm(t); (1)

where pm =
[

pj(m),k(m)

]

and fm(t) =
[

fj(m),k(m)(t)
]

are [Jm + 1] × [Jm + 1] stochastic
matrix and matrix of pure time densities, correspondingly.

Semi-Markov matrix (1) has the following features: elements of the matrix hm(t)
zero column, Jm-th row and diagonal elements are equal to zeros. Physically it means,
that any unit cannot return to the beginning of exploiting, cannot return from the
state of complete destruction and cannot switch to the same state, as before switching.
Weighted time densities hj(m),k(m)(t) describe both sojourn time in the state aj(m), and
prior probabilities of switching into conjugative states. Due to there is the only absorbing
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state in µm, for elements of rows from 0m-th till [Jm−1]-th the next expression is true:

J(m)
∑

k(m)=1(m)

∫

∞

0

hj(m),k(m)(t) dt = 1, 0(m) 6 j(m) 6 J(m).

Both probabilities pj(m),k(m) and parameters of time densities fj(m),k(m)(t), such as
expectations and dispersions, defining fault/recovery process in m-th unit, depend on
the material, of which the element is made, quality of element manufacturing and
assembling, exploiting conditions, side effects, and so on, and define mobile robots’
reliability in common.

From the common problem of reliability estimation digitizing may be set off three
tasks, which one should fulfill:

– the estimation of the time till failure (random walk from a0(m) till aJ(m));
– the estimation of the time and transition probability of random walk from arbitrary

aj(m) 6= a0(m) 6= aj(M) till arbitrary ak(m) 6= a0(m) 6= aj(M);
– the estimation of the time and probability of returning to aj(m) 6= a0(m) 6= aj(M).
In general, time till failure may be defined as follows [22]:

f̃0(m),J(m)(t) = L−1

[

IR0(m) ·
∞
∑

w=1

{L(hm(t))}
w · ICJ(m)

]

, (2)

where IR0(m) is the [J(m) + 1]-size row-vector, in which 0(m)-th element is equal to one,

and other elements are equal to zeros; ICJ(m) is the [J(m) + 1]-size column-vector, in

which J(m)-th element is equal to one, and other elements are equal to zeros; L and
L−1 are direct and inverse Laplace transforms, correspondingly. To solve the second
task one should transform hm(t) as follows

hm(t)→ h′

m(t).

During the transformation, the only restriction imposed onto wandering trajectories is
that neither aj(m), nor ak(m) state processes should fall twice. To form hm(t)

′ with such
properties in semi-Markov matrix hm(t) all elements of j(m)-th column and k(m)-th
row should be replaced by zeros. Elements hi(m),l(m)(t) should be recalculated as follows:

h′i(m),l(m)(t) =
hi(m),l(m)(t)

J(m)
∑

k(m)=0(m),
k(m) 6=j(m)

pi(m), k(m)

, 0(m) 6 i(m), j(m), k(m) 6 J(m), i(m) 6= k(m).

Stochastic summation of densities, formed on all possible wandering trajectories,
gives the following expression:

h̃′j(m),k(m)(t) = IRj(m) · L
−1

[

∞
∑

w=1

{L[hm(t)
′]}w

]

· ICk(m), (3)

where IRj(m) is the row-vector, in which j(m)-th element is equal to one, and other

elements are equal to zeros; ICk(m) is the column-vector, in which k(m)-th element is
equal to one, and other elements are equal to zeros.
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In the semi-Markov process hm(t)
′ there are, as a minimum, two absorbing states,

namely ak(m) and aj(m), so the group of events of reaching from is not full, and in

common case h̃′j(m),k(m)(t) is weighted, but not pure density. The state ak(m) from the
state aj(m) may be reached with probability [23]

p̃′j(m),k(m) =

∫

∞

0

h̃′j(m),k(m)(t) dt

and pure time density of wandering from the state aj(m) to the state ak(m) may be defined
as follows:

f̃ ′

j(m),k(m)(t) =
h̃′j(m),k(m)(t)

p̃′j(m),k(m)(t)
, (4)

when solving the third task, one should execute the following transformation:

hm(t)→ h′′

m(t),

where one row and one column are added to the matrix; complementary, [J(m) + 1]-th
row should be fulfilled with zeros; j(m)-th column at first should be carried over the
complementary -th column, and then it should be fulfilled with zeros. Stochastic sum-
mation of densities, formed on all possible wandering trajectories, gives next expression:

h̃′′j(m),k(m)(t) = IRj(m) · L
−1

[

∞
∑

w=1

{L[hm(t)
′′]}w

]

· ICJ(m)+1, (5)

where IRj(m) is the [J(m) + 2]-size row-vector, in which jm-th element is equal to one,

and other elements are equal to zeros; ICJ(m)+1 is the [J(m) + 2]-size column-vector, in

which [J(m) + 1]-th element is equal to one, and other elements are equal to zeros.
In the semi-Markov process h′′

m(t) there are two absorbing states, namely aJ(m) and
aJ(m)+1, so the group of events of reaching aJ(m)+1 from aj(m) is not full and in common

case h̃′′j(m),J(m)+1(t) is weighted, but not pure density. The state aJ(m)+1 from the state
aj(m) may be reached with probability

p̃′′j(m),J(m)+1 =

∫

∞

0

h̃′′j(m),J(m)+1(t) dt

and during pure time density

f̃ ′′

j(m),J(m)+1(t) =
h̃′′j(m),J(m)+1(t)

p̃′′j(m),J(m)+1(t)
. (6)

2. Sampling of time densities

As it follows from (2), (3), (5), expressions for calculation of densities f̃0(m),J(m)(t),

f̃ ′

j(m),k(m)(t), f̃
′′

j(m),J(m)+1(t) are too complicated to use them for analysis of robotic system
reliability, due to the fact there is so-called “competition” [20, 21] for failure among
equipment units. So, to investigate the reliability of the robotic system as a whole, one
should use any approach to densities mentioned.

Let us consider generalized density

φm(t) ∈ {f̃0(m),J(m)(t), f̃
′

j(m),k(m)(t), f̃
′′

j(m),J(m)+1(t)}.
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In the most general case φm(t) is a continual function with the next common properties:

0 6 tmin 6 arg[φm(t)] 6 tmax <∞.

Time density φm(t) may be represented as a histogram. For this purpose domain
[tmin, tmax] should be divided into X intervals, 0 6 t < τ1, ...,τx−1 6 t < τx,
...,τX−1 6 t < ∞, as it is shown in the Figure. For simplification of the model, it
is advisable to do both borders τx between histogram intervals and sampling points θx
representing intervals, uniform for all 1 6 m 6M .

p
f q 2q 1 q x q X

p m x,

pm,2

p m,1

p m X,

t0 t1 tx-1 tx tX-1 tX t

... ...

... ...

f ( )t
m

D

Figure. Time density sampling

Histogram intervals width D is as follows:

∆ =
τ1 − τX−1

X − 2
, (7)

where X is the quantity of histogram intervals; τ1 and τX−1 are the right border of the
first interval and the left border of the X-th interval.

Values of intervals are equal to

πm,x =

∫ r(x)

l(x)

φm(t) dt, (8)

where l(x) 6 t 6 r(z) are left and right limits of integration interval;

l(x) = {τ1 +∆(x− 2)}, when 2 6 x 6 X,

r(x) = {τ1 +∆(x− 1)}, when 1 6 x 6 X − 1.

Sampling points, representing histogram intervals, are as follows

θx = τx −
∆

2
.

In a discrete model, every interval of the histogram is represented as weighted
shifted degenerative distribution law, so the time density of the described histogram is
as follows:

φ̃m(t) =
X
∑

x=1

πm,x · δ(t− θx), (9)
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where δ(...) is the shifted Dirac δ-function;πm,x is the weight of Dirac function:

X
∑

x=1

πm,x = 1.

The error of digitizing may be estimated as follows:

ǫm =

∫ l(0)

0

φm(t) dt+
X
∑

x=1

∫ r(x)

l(x)

|φm(t)− πm,k| dt+

∫

∞

τ(K)

φm(t) dt.

One would admit that there are no restrictions, imposed on φm(t), besides
arg[φm(t)] > 0. Expression (9) satisfies this restriction so process µ still remains the
semi-Markov one.

3. Interaction in fault-tolerant system

Mobile robot redundant units, assembled into the fault-tolerant structures during
operation, compete for failure. The result of this competition is the failure of m-th unit
the first or not the first. The lifetime of M -units redundant structure is as follows
[20,21]:

φν(t) =

d{1−
M
∏

m=1

[1− Φm(t)]}

dt
, (10)

where Φm(t) is the distribution function;

Φm(t) =

∫ t

0

φm(ξ) dξ. (11)

The weighted time density, the probability, and the pure time density of winning the
competition for failure by the m-th unit are as follows

ϑν,m(t)φm(t)
M
∏

l=1
l 6=m

[1− Φl(t)], πν(m) =

∫

∞

0

ϑν,m(t) dt, φν,m(t) =
ϑν,m(t)

πν,m
, (12)

where ϑν,m(t) is the weighted time density; πν,m is the probability; φν,m(t) is the pure
time density of winning by the m-th unit.

When φm(t) is transformed into its discrete analog φ̃m(t), as it is shown at (9), the
time distribution function is transformed to Φ̃m(t):

Φ̃m(t) =

∫ t

0

φ̃m(ξ) dξ =
X
∑

x=1

πm,x · η(t− θx), (13)

where η(t− θx) is the shifted Heaviside function.
Dependence (12) may be transformed into the sequence of samples as follows:

Φ̃m(t)→ Φm(t) =
X
∑

x=1

[(
x

∑

y=1

πm,y) · δ(t− θx)], (14)
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where
x
∑

y=1

πm,y is the nomination of the function Φm(t) sample at the point θx.

Accordingly, 1− Φm(t) function may be transformed into discrete form as follows:

[1− Φm(t)] =
X
∑

x=1

[(
X
∑

y=x+1

πm,y) · δ(t− θx)].

Combinations of φ̃m(t) and [1− Φm(t)] permit us to construct the discrete analog ϑν,m(t)
of function (10). It is necessary to admit, that when time intervals are described with
continual functions φm(t),1 6 m 6 M , then there may be only one winner in the com-
petition(10) due to the fact, that probability of competition draw, even in the case of
paired races, is too small in comparison with probabilities of winning by one of the
participants. When time intervals are described with discrete distribution function, a
draw effect emerges with probabilities, comparable with winnings and losing probabili-
ties due to the fact, that time interval τx−1 6 t < τx may include number of events. To
determine possible combinations φ̃m(t) and [1− Φm(t)] it is necessary to consider data,
which includes M binary digits:

n = 〈n(1), ..., n(m), ..., n(M)〉,

where inside triangle brackets there is the code, obtained by means of Cartesian expo-
nentiation to M -th degree the set [0, 1]; n(m) ∈ [0, 1] is binary digit 0 6 n < 2n.

All codes n may be gathered onto set N , which is divided onto subsets Nl:

N = N0, ..., Nl, ..., NM ,

where Nl is the subset of codes, which include l “nulls” and M -l “ones”. In turn,

Nl = {n1(M,l), ..., nc(M,l), ..., nC(M,l)},

where nc(M,l) is c(M, l)-th M -digits code, including l “nulls” and M − l “ones”; C(M, l)
is common quantity of such codes; c(M, l) is the index, which numerates codes in the
set Nl;

C(M, l) =
M !

l! · (M − l)!
,

nc(M,l) = 〈n[1, c(m,L)], ..., n[m, c(m,L)], ..., n[M, c(m,L)]〉,

n[M, c(m,L)] ∈ [0, 1]. (15)

The function of two parameters, namely, time and m-th code digit state n[m, c(M, l)]
should be introduced to describe distribution:

ψ{t, n[m, c(M, l)]} = {φ̃m(t) when n[m, c(M, l)] = 0}. (16)

A competition outcome, alike (11), when l units of M failure during the time interval
τx−1 6 t < τx, may be expressed as

ϑ̃ν,l/M(t) =
M
∑

m=1

C(M,l)
∏

c(M,l)=1

ψ{t, n[m, c(M, l)]}.
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The probability and pure discrete time distribution and mean time of l/M units simul-
taneous failure are as follows:

π̃ν,l/M =

∫

∞

0

ϑ̃ν,l/M(t)dt, φ̃ν,l/M(t) =
ϑ̃ν,l/M(t)

π̃ν,l/M
, π̃ν,l/M =

∫

∞

0

t · τ̃ν,l/M(t) dt.

Let some robot fault-tolerant assemble to be workable until among all M units at least
one unit stays “alive”. There are 2M−1 combinations of reaching unworkable state, e. g.,
3-units assemble may fail as 1+1+1, 1+2, 2+1, 3. Analysis of every combination gives
different probabilities and pure time densities for evaluation of assemble “lifetime”. So it
is necessary to evaluate time till failure for every combination, and then stochastically
summarize them.

4. Digital calculation of reliability parameters

The above theoretical calculations follow the digital method of fault-tolerant system
reliability parameters estimation.

1. Working out the model of single unit failure/recovery process and calculation time
density till failure of this unit accordingly (2), (4), (6).

2. Transformation of time density into discrete form accordingly (7), (8).
3. With use of the formulae (13), (14), (15), (16), calculation discrete distribution of

assembling “lifetime” for different combinations of units failures/recoveries.
4. Estimation of reliability parameters of the fault-tolerant assembles as a whole.

Conclusion

As a result, the task of designing fault-tolerant assemblies was proposed to be divided
into two stages:

– development of conventional semi-Markov models of individual units, and conver-
sion it to the discrete form;

– analysis of a parallel discrete semi-Markov process to obtain the reliability param-
eters of equipment as a whole.

The proposed approach allows us to create a model of a redundant system with any
degree of accuracy, to develop a method for optimizing a fault-tolerant system based on
the approach of a discrete model. Further research in this area may be aimed at modeling
many practical redundant systems with complex interactions between components and
complex “life cycle” algorithms.
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