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Abstract. Let G = (V, α, f) be a colored graph with a coloring function f defined on its vertices

set V . Colored graph G∗ is an edge 1-extension of a colored graph G if G could be included

into each subgraph taking into consideration the colors. These subgraphs could be built from

G∗ by removing one of the graph’s edges. Let colored edge 1-extension G∗ be minimal if G∗

has as many vertices as the original graph G and it has the minimal number of edges among

all edge 1-extensions of graph G. The article considers the problem of search for minimal edge

1-extensions of a colored graph with isomorphism rejection technique. The search algorithm of

all non-isomorphic minimal edge 1-extensions of a defined colored graph is suggested.
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Аннотация. Граф G = (V, α, f)— это цветной граф с определенной на множестве его вершин

функцией раскраски f . Цветной граф G∗ называется реберным 1-расширением цветного

графа G, если граф G можно вложить с учетом цветов в каждый граф, получающийся

из графа G∗ удалением любого его ребра. Реберное 1-расширение G∗ графа G называется

минимальным, если граф G∗ имеет столько же вершин, сколько содержит исходный граф
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G, а среди всех реберных 1-расширений графа G граф G∗ имеет минимальное число ребер.

Рассматривается задача поиска минимальных реберных 1-расширений цветного графа без

проверки на изоморфизм. Предлагается алгоритм поиска множества всех неизоморфных

минимальных 1-расширений для заданного цветного графа.

Ключевые слова: расширения графов, раскраски графов, цветные графы, реберные

расширения, минимальные расширения, изоморфизм графов, изоморфизм цветных графов,
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Introduction

There are many vital areas where high-technological computing devices and systems
are used. The importance of these systems creates high availability requirements for
them. These requirements could be met if system architecture is designed, which should
satisfy all demands. One of these demands is fault tolerance. Fault tolerance term was
proposed by A.Avizienis [1] and defines the property that enables a system to continue
operating properly in the case of some components failure.

Fault tolerance research was made by J. P.Hayes [2] and had a huge impact. Hayes
researched critical faults when failed components were totally removed from the system,
and suggested considering fault tolerance problems on a graph model. Such a model con-
siders critical fault as a vertex removal from a graph. Moreover, Hayes proposed several
algorithms for building k-fault tolerance implementation of the system. k-fault means
that system continues operating properly in the event of the failure of k components at
one time.

In the 90s, the famous American mathematician Frank Harary together with John
P. Hayes [3, 4] generalized a fault tolerance graph model in the case of connections
faults between system components. They proposed this model as an edge fault tolerance
system implementation.

Let the system be an edge k-fault tolerance implementation of an original system
if the fault of any k edges leads to the graph which includes the graph of an original
system. Edge k-fault tolerance system implementation could be described as adding ex-
tension connections between components. Extension items are masked in regular system
work. When a fault occurs, the system reconfigures itself to achieve an original state.
M.B.Abrosimov [5] suggested calling the edge k-fault tolerance system implementation
an edge k-extension of a graph.

There is proof that finding edge k-extension of a graph is the NP -complete prob-
lem [6]. At the beginning of fault tolerance research [5], a backtracking algorithm of
generating all minimal edge k-extensions of graphs was suggested which will be referred
to as ME-kE. The algorithm uses brute force of all possible solutions and is hard in
multithread implementation, but it is universal and convenient for modifying.

One of the most effective improvements of the backtracking algorithm is an isomor-
phism rejection technique [7]. This technique allows us to reject all isomorphic graphs
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and keeps only non-isomorphic. Moreover, it allows us to get rid of comparing each of
the two graphs on isomorphism.

There are two effective and efficient approaches to this technique. The first approach
was described in the Read –Faradzhev method [7], the second one was proposed by
McKay [6].

M. B. Abrosimov, H. H. K. Sudani and A. A. Lobov [8] suggested the algorithm of
construction of all minimal edge extensions of the graph with isomorphism rejection.
I. A. K. Kamil, M. B. Abrosimov and A. A. Lobov [9] proposed the similar results for
minimal vertex extensions.

1. The search problem for edge extensions of colored grpahs

This article is a logical continuation of edge extensions research and considers the
problem of search for edge extensions of graphs with defined coloring function. There
are various ways to define the problem for colored graph edge extensions. We can
choose different coloring functions for graphs: vertex coloring, edge coloring, combined,
i.e. vertices with edges coloring. This article considers only edge extensions for graphs
with vertex coloring. Let us define several common terms. We are considering only
undirected graphs.

1.1. Colored graphs and edge extensions definitions

Definition 1. Let G = (V, α) be a graph, and i ∈ N. Then function f : V → {1, . . . , i}
is vertex i-coloring of graph G and f(v), v ∈ V is the color of vertex v. Graph with
coloring function is usually referred to as a graph with colored vertices, or a colored
graph. Colored graphs notation looks like G = (V, α, f).

Definition 2. Graph GR = (VR, αR, fR) is edge k-extension (E-kE) implementation
of the i-colored graph G = (V, α, f), where k ∈ N if graph G could be embedded with
the preservation of its colors into each subgraph of GR which could be constructed by
removing any of its k edges.

In other words, graph G should be embedded in any subgraph of GR constructed by
removing its any k edges, with preservation of the original coloring function.

Definition 3. Graph G∗ = (V ∗, α∗, f ∗) is minimal edge k-extension (ME-kE) imple-
mentation of the i-colored graph G = (V, α, f), where k ∈ N if the following criteria are
satisfied:

1) graph G∗ is an edge k-extension of the colored graph G;
2) graph G∗ has the same number of vertices as the original graph G;
3) the number of edges in G∗ set is the minimal around all graphs, which met the

first two criteria.

In the case of specified coloring function, edge-fault tolerant implementation of the
graph should have a special property. This property is the preservation of the coloring of
an original graph after reconfiguration. Such property can be formulated in the context
of some computing system with different types of components. The edge-fault tolerant
implementation of the original system must preserve the number of the components of
different types and connections between them.

The problem of preserving original coloring is a non-deterministic computational
complexity so it has no efficient solution. This article suggests some ideas to accelerate
the search for extensions search with a coloring preservation property.
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1.2. Isomorphism rejection approach for the search of edge extensions

Despite [8, 9], we are considering different methods to achieve a solution for an
edge extensions search problem. This paper uses the Brendan McKay method [6] of an
isomorphism rejection. The main feature of the method is a specific way of candidates
generation. A candidate is some structure in this context, e.g. graph, system, device,
etc. Generation happens iteratively from low to high: from an ancestor to a descendant.
Each candidate could be a descendant of a few ancestors. To implement generation of
all structures without isomorphism verification, McKay suggests following these steps.

1. Define the unique canonical ancestor and its own way of generation for each
structure.

2. Accept the structure only in the case it is generated by the chosen way from the
canonical ancestor.

3. Generate all non-isomorphic structures from the ancestor only once.
Usually, the canonical ancestor form is called the canonical code of a structure.

Within this article, it is a canonical code of the graph.
Let us define a canonical code and a canonical way to generate structure from. The

canonical code is a pair (µmax(G), FC(G)), where µmax(G) is a maximal matrix code
of the graph G and FC(G) is a special prime coloring code of the graph G, which we
consider below.

2. Maximal matrix code of defined graph as a part of the canonical code

We need to construct maximal matrix code µmax(G) for the defined graph as a part
of canonical code for the McKay method. The maximal matrix code is a convenient
way to define non-isomorphic graphs because it is a graph’s complete invariant [10].
As we are considering only undirected graphs, µmax(G) will be constructed only by the
right upper triangle of an adjacency matrix. Any convenient method to receive maximal
matrix code could be chosen.

The applicable way of generation for µmax(G) needs to be found. Obviously, it should
guarantee that adding another edge between two representative items of different simi-
larity classes does not violate the maximal property of the code. In other words, obtained
maximal matrix codes should preserve canonical property. Let us consider vertices sim-
ilarity definitions in terms of this article [6].

Definition 4. A colored graph’s automorphism is an isomorphism of a colored graph
on itself. In other words, it is a permutation of colored vertices in such a way that the
edge set is not changed.

Definition 5. Two vertices are similar if and only if there is an automorphism which
reflects one vertex to another.

Definition 6. The similar vertices set are called an orbit.

The article proposes the algorithm of constructing all new non-isomorphic graphs
from a defined maximal matrix code by adding one additional edge. This algorithm
meets maximal property requirement.

Let us define function Orb(G)[v] which results in a set of vertices similar to v.
The algorithm’s input is µmax(G

′) of graph G′ and f(G′) is the graph’s coloring. The
output of the algorithm is a set of maximal matrix codes which are constructed from
the original graph by adding one additional edge. The algorithm follows these steps.
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1. Calculate an orbit set Orb(G′) of the defined graph according to coloring function
if it exists.

2. Calculate a set of representative vertices Porb from orbits set, where each item will
be the first item from each orbit in Orb(G′).

3. For each vertex v define a set Alwv. It contains vertices in which additional edges
are allowed and are based on the following criteria:
• each vertex from the same orbit as v vertex is allowed;
• any vertex from the other orbit than v vertex is allowed if it is in Porb, i. e.
p ∈ Alwv ⇔ p ∈ Porb, and its number is greater than the number of v vertices.

4. For each vertex v from Porb, we build new codes by adding one additional edge to
µmax(G

′) with the following criteria:
• consider u ∈ Alwv;
• v < u, where the number of vertex u should be greater than the number of

vertex v;
• (v, u) /∈ α′.

5. Type all generated codes as maximal matrix codes of non-isomorphic graphs which
are constructed from G′ by adding one additional edge.

We discover that during the implementation it is more efficient to consider a number
of vertices from high to low on step 4.

The described algorithm allows us to specify the canonical way to obtain µmax(G)
descendants without coloring preservation.

3. Prime coloring code for preserving coloring property in edge extensions

Now let us extend the results above with the coloring preservation requirement’s
solution. As it was described above, the coloring code will be considered. The colors
will be coded as integers with zero-indexing. It will help in further implementations.

For an i-colored graph, the coloring vertex code of the vertex v is a structure
f(v) (|f0| , |f1| , . . . , |fi−1|), where f(v) is a color of v and |fj| is a number of j-colored
neighbors of vertex v. For example, for some vertex v of the 2-colored graph the coloring
vertex code equals to 0(3, 0), which means that f(v) = 0 and v has three neighbors of
color 0 and zero neighbors of color 1.

The vector of such coloring vertex codes structures the coloring code of the graph.
This coloring code is not convenient because comparing two coloring codes means
using some backtracking method which is slow. This demands using a more efficient
modification of the coloring code.

Let us choose for each color two unique prime numbers. The first number fs(fj)
could be small, the second number sc(fj) should be greater than fs(fj)

n, where n is a
number of vertices in the graph. Then for each coloring vertex code, we can calculate
the number called prime coloring vertex code. For the coloring vertex code from the
previous example, prime coloring vertex code will be the following:

fc(v) = sc(f(v)) · fs(f0)
|f0| · fs(f1)

|f1| · . . . · fs(fi−1)
|fi−1|.

Obviously, this code is a multiplication of prime numbers. Vector of prime coloring
vertex codes forms the prime coloring code of the defined graph. Let us define it as
FC(G) = {fc(v)|G = (V, α), v ∈ V }. Therefore graphs’ colorings G and G′ inclusion
check of the preservation of colors could be described in the following algorithm.

Define the function FC(G)[v] = fc(v), where v is a vertex from graph G.
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The input of the algorithm are FC(G) non-increasing ordered and FC(G′) non-
increasing ordered. The result is “YES” or “NO” depending on the answer, whether G
coloring is preserved in graph G′ or not. The algorithm follows the steps.

1. i = 0, j = 0.
2. If i > |FC(G′)| and j > |FC(G)|, then type “YES” and exit.
3. If i > |FC(G′)| and j 6 |FC(G)|, then type “NO” and exit.
4. If j > |FC(G)|, then type “YES” and exit.
5. If FC(G′)[i]modFC(G)[j] = 0, then j = j + 1.
6. i = i+ 1 and go to step 2.

Obviously, the described algorithm allows us to find an answer, whether the colored
graph G is included into the colored graph G′.

4. The search algorithm for all minimal edge k-extensions of an undirected

colored graph

The previous sections 2 and 3 suggest two algorithms to cover canonical code
generation and coloring preservation cases. Therefore we can formulate the algorithm
of searching all minimal edge extensions based on the isomorphism rejection technique.

On the input, the algorithm takes µmax(G) of an undirected i-colored n-vertex graph
G. The result is a set of maximal matrix codes for all non-isomorphic edge k-extensions
of the defined graph. The algorithm offers the following steps to proceed.

1. Calculate G prime coloring code: FCorg = FC(G).
2. Define a new graph as a copy of the original one: G′ = G.
3. Append a new graph G′ to a list of candidates CD: CD ← G′.
4. ci = 0.
5. If |CD| = 0, then exit.
6. cd = CDci, ci = ci+ 1.
7. Calculate maximal matrix code for graph cd: µmax(cd).
8. Calculate new candidates CDnew from graph cd using the algorithm from section 2,

which should take µmax(cd) and f(cd) as input.
9. If |CDnew| = 0, then go to step 5.

10. Define set of extensions EXT = ∅.
11. i = 0.
12. Get i-th item from candidates list Gi ∈ CDnew to verify whether the candidate is

applicable to minimal edge extension requirements.
13. Iteratively remove each permutation of k edges from Gi.
14. For each G∗

i obtained by removing edge permutation calculate prime coloring code
FC(G∗

i ) and run algorithm from section 3 to compare FC(G∗
i ) non-increasing

ordered and FCorg non-increasing ordered.
15. If the algorithm’s result is “YES”, then Gi is a minimal edge k-extension, append

it to EXT : EXT ← Gi.
16. i = i+ 1.
17. If i < |CDnew|, then go to step 12.
18. If |EXT | 6= 0, then type EXT as a set of maximal matrix codes of all non-

isomorphic minimal k-extensions of the defined undirected i-colored n-vertex graph
and then exit.

19. Push items of CDnew to the end of CD : CD ⇐ CDnew and go to step 5.
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The algorithm accepts multithread implementation. It can be achieved by producer-
consumer architecture, where CD contains required candidates, and different threads
take it from CD and check whether the candidate is applicable for the resulting set of
extensions.

5. Time estimation of the searching algorithm implementation

The resulting algorithm was implemented and tested on undirected graphs with the
different numbers of vertices with 2 colors. The time estimation results are reflected in
the Table. The graph’s coloring is imagined as a vector of colors (f(0), f(1), . . . , f(n−1)),
where f(v) stands for the color of vertex v ∈ V .

Table

The search algorithm’s time estimation on undirected colored n-vertex graphs

n Coloring vector The amount of graphs Total time Average time, ms.

5 (0, 1, 1, 1, 1) 33 300 ms. 9

5 (0, 0, 1, 1, 1) 33 360 ms. 11

6 (0, 1, 1, 1, 1, 1) 156 18 sec. 122

6 (0, 0, 1, 1, 1, 1) 156 15 sec. 195

6 (0, 0, 0, 1, 1, 1) 156 12 sec. 78

7 (0, 1, 1, 1, 1, 1, 1) 1044 7 m. 34 sec. 419

7 (0, 0, 1, 1, 1, 1, 1) 1044 7 m. 6 sec. 405

7 (0, 0, 0, 1, 1, 1, 1) 1044 6 m. 48 sec. 391

8 (0, 1, 1, 1, 1, 1, 1, 1) 12345 2 h. 30 m. 2 sec. 743

8 (0, 0, 1, 1, 1, 1, 1, 1) 12345 2 h. 12 m. 59 sec. 635

8 (0, 0, 0, 1, 1, 1, 1, 1) 12345 2 h. 19 m. 33 sec. 657

8 (0, 0, 0, 0, 1, 1, 1, 1) 12345 2 h. 5 m. 57 sec. 612

Conclusion

The investigation of the search problem for minimal edge extensions for undirected
colored graphs has been done. The corresponding definitions have been considered in
the context of the coloring function defined on undirected graphs. The article describes
a modified canonical code method based on the isomorphism rejection technique. The
pair of unique identificators have been found out for the case of non-isomorphic colored
graphs. Moreover, there is an algorithm for a special unique way to generate new
candidates from the defined canonical code. The study has proposed the search algorithm
for all minimal edge extensions of the defined undirected colored graph. This algorithm
has been implemented and tested for different graphs classes.
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