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HayuHasi cratbs
YIK 518.517.944/947

Pa3HoCTHBII MeTOJ BbICOKOW TOYHOCTH MpuU pemeHuu 3agaum dupuxie
AJg ypaBHeHud Jlanjaca Ha NpsIMOYTroJIbHOM MapaJiesenunese
C TPaHMYHbIMU 3HaYeHUusiMH B O

A. A. Tocues

3ananHo-Kacnuiickuil yHuBepcuter, Azep6aiinxkan, AZ1001, r. Baky, yan. Ucturnanusr, n. 31

HocueB Anuresan Axmen oray, IOKTOp (DM3HKO-MAaTeMaTHUECKUX HAYK, TMpernofaBate/b Kadeopbl MEXaHHKH U MaTeMa-
tukH, dosiyevadiguzel@gmail.com, https://orcid.org/0000-0001-9154-8116

AHHOTaI_lI/IH. B pa60Te npepJsaraeTcsa u 000CHOBBIBAETCS TpexaTanglﬁ paSHOCTHbIﬁ METON OJid pEelIeHHsd 3a-
nauun [upuxse ypaBHeHus Jlansmaca Ha mpsiMOyrosibHOM NapasJenenunefe. Ha nepsoM artane npubmukeHHOe
3HadyeHHWe CYMMbl U3 YUCTBIX HETBEPTbLIX MPONU3BOAHLIX pELIEHHs OIpeaessaeTCs 14-ToyeyHbIM Pa3HOCTHBIM
orepaTopoM Ha Kybuueckodl ceTke. Ha BTopoM sTame nmpubiuKeHHOe 3HaYeHHE CYMMBI M3 YHCTBIX IIECTBIX
TIPOM3BOHBIX pelLIeHHUs] ONpefessieTCsl MPOCTeHIINM 6-TOYeYHbIM Pa3HOCTHEIM omepatopoM. Ha TpeTbem
JTare CUCTeMa Pa3HOCTHBIX YPaBHEHHWH JJIS HCKOMOTO pelleHHsI KOHCTPYUPYETCsl TaKxKe ¢ MOMOIbI0 6-To-
YeyHOro Pas3HOCTHOTO OMepaTopa ¢ KOPpPeKLHel 10 pe3y/bTaTaM [epBOro W BTOporo 3TanoB. JlokasaHo, 4To
npe/JIoKeHHas Pa3HOCTHAs cxeMa pelueHus Ans 3anaun dupuxae cxomutesi co ckopocthio O(hS(|Inhl + 1)),
KOrjia rpaHHYHble (YHKLUMK Ha rpaHsax u3 Ol a Ha peGpax MX BTOpbIe, YeTBEpThIE U LIECThble MPOM3BONHbIE
YIOBJIETBOPSIIOT YCJIOBHIO COIVIACOBAHHMSI, BbITEKAIOILEr0 W3 ypaBHeHus Jlamsaca.

KoroueBble ciioBa: KOHEYHO pasHOCTHBHIN Merton, 3D ypaBHenus Jlansaca, kyOHyecKHe CeTKH B mapasJele-
nunene, 14-ToueyHblll onepaTtop yCpeiHEHHSs, OLLeHKH MOTPEIHOCTH
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Introduction

A highly accurate method is one of the powerful tools for reducing the number of unknowns,
which is the main problem in the numerical solution of differential equations to get reasonable
results. In the most of approximations to get highly accurate results the difference operators with
a high number of patterns are used, which increase the number of bandwidth of the difference
equations. It is obvious that the complexity of the realization methods for the difference equations
increases depending on the number of the bandwidth of the matrices of these systems of difference
equations. As it was shown by R. E. Tarjan [1], in the case of the Gaussian elimination method
the bandwidth elimination for n x n matrices with the bandwidth b, the computational cost is of
order O(b%n).

One of the effective methods of increased accuracy which uses the simplest finite difference
approximation by correcting the right-hand-side term with the application of the high order
differences of the numerical solution of differential equation, was proposed by L. Fox [2] without
theoretical justification. Some modification of Fox’s approach was given by Woods [3]. A
theoretical justification of Fox’s method was presented by Volkov in [4,5]. From Volkov’s results
in the case of the Dirichlet problem for Poisson’s equation on a rectangular domain II, it follows
that the approximate solution obtained by the g-th correction of the right-hand side of the 5-point
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scheme, the convergence order in the uniform metric is O(h??), h is the mesh step, when the
exact solution u has (2¢ + 2)-th derivatives on II satisfying a Holder condition with exponent
A€ (0,1), ie., u e C?H2AII).

In Berikelashvili and Midodashvili [6] it is proved that the corrected 5-point difference scheme
on the rectangular grid is convergent at the rate O(|h|™), |h|? = h? + h2, in the discrete Lo-norm,
provided that the exact solution belongs to the Sobolev space W3, m € [2,4].

In Volkov [7] a two-stage difference method for solving the Dirichlet problem for Laplace’s
equation on a rectangular parallelepiped was proposed. It was assumed that the given boundary
functions on the faces of a parallelepiped have the sixth derivatives satisfying the Holder condition,
and on the edges, besides the continuity they satisfy the compatibility condition for second
derivatives, which results from the Laplace equation. It was proved that by using a simple 7-point
scheme in two stages the order of uniform error can be improved up to O(h*Inh~!). From the
conditions imposed on the boundary functions in [7], it does not follow as it was mistakenly
declared in [6] that the exact solution belongs to C®A(II).

Moreover, as it was shown in [8], the theoretical justification of the difference schemes
needs special attention when the boundary values of a solution belong to the Hdélder classes
C?'=11 and 21 — 2 order derivatives satisfy the conjunction condition followed from the Laplace
equation. In this case, some of 2/ order derivatives may be unbounded near the boundary of the
solution domain, and for the rate of convergence of the 27-point difference solution, when [ = 3,
O(RS(||In h| + 1)) of order is obtained.

In this paper, a three-stage difference method constructed a special combination of 15-point
and 7-point schemes for solving the Dirichlet problem of Laplace’s equation on a rectangular
parallelepiped is proposed and justified. It is proved that the obtained difference method converges
uniformly with an order of O(hS(|[Inh|+ 1)) when the boundary functions on the faces are
from C™!, and on the edges their second, fourth, and sixth derivatives satisfy the compatibility
conditions which follows from the Laplace equation.

A numerical experiment is illustrated to support the analysis made.

1. The Dirichlet problem on rectangular parallelepiped

Let R = {(x1,22,23) : 0 < x; <ay, i =1,2,3} be an open rectangular parallelepiped, T';
(j =1,2,...,6) be its faces including the boundaries such that T'; for j =1,2,3 (for j =4,5,6)
belongs to the plane x; = 0 (to the plane z;_3 = a;_3). Let I' = U?le“j be the boundary of the
parallelepiped, let  be the union of the edges of R, and let I'; = I';\y and 7, =TuNTv. We
say that f € CHX(D) if f has continuous k—th derivatives on D satisfying a Holder condition
with exponent A € (0,1}, which is a Lipschitz condition when A = 1.

We consider the boundary value problem

Au=0on R, u=¢;only, j=1,2,..,6, (1)

where A = 9%/02% + 0% /0x3 + 0 /0x3, ¢, are given functions.
Assume that

pj € 0771(Fj)7 ] = 1’ 27 "'a67 (2)
Pu = Pv 00 Yy, (3)
8280u 82901/ az‘Pu
atz + 8t3 875;2“/ =0on /7/1«113 (4)
84‘9# 6490;L 0490” 8490;4
= iz 5
an ooz, ~ o o, O ©)
Pon, Pon | Pon _ Do Fow, Ton (6)
ots  otlot2,  othotz  ototh oS - otiorz, M
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where 1 < pu<v <6, v—p#3,t, is an element in v,,, t, and ¢, is an element of the normal
to v, on the face I', and I',, respectively.
Let o(j) = 3{j/3} + 1, where {a} is the fractional part of a.

Lemma 1. /n the open parallelepiped R it holds that

OMu(zr, z9,23)  OMu(zr,x0,23)  OMu(zy, 29, 23) Otu(z1, 29, x3)

- + +2 (7)
1 1
O] 0%, (5) 0z541) 0 ;)05 511y
aﬁu(x17x27x3) _ 86U(3}1,3§‘2,ZE3) a U(l‘l,[lﬂ'g,l‘?,)
6 - 6 - 6 -
630]. ama(j) 8x0(j+1)
86u(:1:1,:1:2,x3) aﬁu(xl,xg,xg)
"0zt 922 922, . Oz’ ®)
()" o(i+1) a(4) (J+1)
where u is the solution to the Dirichlet problem (1).
Prooi. The proof directly follows from the Laplace equation. O
On R, we define the functions
3
1 82ku(371 xIo 1’3)
k_ & . , T2, B
v =0 <$1,$2,$3) — % J:Zl 81’?k ) k= 2737 (9)

where u is the solution to the Dirichlet problem (1).

Lemma 2. The functions (9) coincide with the unique continuous solution on R of the
boundary value problems

AvF=0o0n R, v*=4FonT;, j=12,.6 k=23, (10)
where

0*¢j(20(j): To(j11)) N 0 (T4(j)s To(j11))

¢ wQ( s To(j41)) = 1 1 +
9755 05 j41)
34 . To(i
N gﬂ (a) <a+1>), (11
o) 0% 1)
%0i(x4(j) To(i+1))  O%pj(ay 1))
1/1 %( ) (j+1))=— 8] (é)x o(j+1)/) a; (gx a(j+1) ' (12)
a(j)” " a(j+1) a(3) 7" a(j+1)

Proof. On the basis of (2)-(6), Theorem 2.1 in [9] it follows that a solution w of problem (1)
belongs to the class CT*(R), 0 < A < 1. Since any order derivatives of a harmonic function are
also harmonic, the functions v¥, k = 2,3 satisfy Laplace’s equation. The boundary conditions in
(10) with (11) and (12) follow from (1), Lemma 1 and (9). Then by Theorem 3.1 in [9] each of
the functions v*, k = 2,3 is the unique continuous solution on R of problem (10). g

Lemma 3. Even order derivatives in the form

ABu

a2 o 0SPsd 0sgsd-p, (13)

of the solution u of problem (1) are bounded on R.
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Proof. Let w = %. We have
1

Aw=0onR, w=®; only, j=1,2,.,6,

where
P
o, =1 =23056 14
7 83:(15 ) j )Yy YUy Yy ( )
36g0‘ 86@' 8680' 8690.
o, =——"1_3 J__3 J J i =1,4. 15
I T oot Coidond  oay b (15)

From (1)-(6) follows that the boundary functions ®;, j = 1,2,...,6 defined by (14) and (15)
satisfy the conditions
;e CH(Ty), ®,=3, onyu.

Then, on the basis of Theorem 4.1 in [9] the pure second-order derivatives of the function w are
bounded in R. Then

Bu 0w <
sup a8 = sup a9 o0,
(x1,x2,23)ER afUl (z1,72,23)ER &rl
OBu 0w _
sup A 6402 — sup a9 o0,
(x1,72,23)ER axla'rQ (x1,22,23)ER axQ
Bu 0w -
sup A 609 = sup "l Q.
(z1,22,23)ER dxi0x3 (z1,22,23)ER Oy
.. . 6 6 .
Similarly, by taking w = 372, and w = % the boundedness of the remainder even order
2 3
derivatives in (13) are proved. 0

Lemma 4. Let u be the solution of problem (1), p(x1,x2,x3) be the distance from the current
point of R to its boundary and let 80l = a10/0x1 + a20/0x2 + a30/0x3, aF + a3 + a3 =1 be
the | — directional differentiation operator. Then

OMOu(x1, 9, 3)

8[10 < COp_Q(xlaxQMZ'?))? (-711,.%2,1‘3) c R7 (16)

where ¢y is a constant independent of the direction | of the operator 0/0l.

Proof. Since any tenth-order derivative of u can be obtained by two times differentiating
some of the derivatives of the form (13), on the basis of Lemma 3 from [10, Chapter 4, Sec. 3]
and Lemma 3, we have

OOu(xq, 22, 23) 9
< - .
o5iZlo0< s [aufaugoaly | S Ok () €D
From (17) follows the inequality (16). O

2. O(h%||Inh|) order accurate approximate solution

Consider a cubic mesh with the mesh size h > 0 formed by the planes x; = 0, h, 2h,...(i = 1,2, 3).
Assume that a;/h >4 (i = 1,2,3) are integers. Let Dy, be the set of mesh nodes, Ry = RN Dy,
th = Fj N Dy, I'y, =T N Dy, F;h = F; N Dy, and F;z = Fllh U..u F%h We put Ry, = Rp U Ty,

E;l = RpU T Let Rﬁ C Ry, be the set of nodes of Ry lying at a distance of kh away from the
boundary I' of R. It is clear that k =1,2,..., N(h), where N(h) = [min{a,az,as}/(2h)].
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For the grid functions on Ry, we consider the 6-point difference operator A as

6
1
Au(zy, 2, 73) = 8 Z Up,

p:l(l)
and the 14-point difference operator S as
1 6 14
Su(xl,xg,xg)z% 8 Z Up + Z uq |,
p:l(l) q:7(5)

where the sum Z(k) is taken over the grid nodes that are at a distance of v/kh from the point
(21,22, x3), up and u, are the values of u at the corresponding grid points.
Consider two systems of grid equations

vy, = Avy + g, on R, vy, =0 onT}, (18)
v = AU, +7p, on Ry, T, =0 onTY, (19)
where gj, and g, are given functions and |gn| < g, on Ry,.
Lemma 5. The solutions vy, and vy, to systems (18) and (19) satisfy the inequality
lvp| < T on Ry.
Proof. The proof of Lemma 5 follows from the comparison theorem (see [11, Chapter 4]). O]
2.1. The first stage
Let vZ be a solution of the following finite difference problem
v,% = Sv,% on Ry, U,QL =jonly,, j7=1,2,..,6, (20)

where v, j =1,2,...,6 are functions defined in (11).
Let ¢, ¢y, ca, ... denote positive constants independent of the nearby multiplier, of which some
possibly have identical values.

Lemma 6. The following estimation holds
max _ |[v7 — 0% < ehY(|Inh| +1),
(z1,22,23)ERY,
where v? is the function (9) when k = 2 and v is the solution of the system of grid
equations (20).

Proof. By Lemma 2,
Av’=0o0n R, v=v¢jonT;, j=1.2..6,

where functions 7 defined by (11).
For the error function
6%21}%—1}2, (21)

we have
ep = Sej + (Sv* —v?) onRy, ;=0 onTY,.
Let €2 be represented as

5,21 = ai’l + 62’2 + ...+ Ei’N(h), (22)
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where 52’“, 1 < k < N(h) is the solution of system
aik = Ei’k —|—£k on Ry, 52’“ =0 on I,

with
e Sv? -2 on RE,
0 on R,\RE.
By virtue of Lemma 4 in [12], we have

max  |e7F <5k max S —?, 1<k < N(h). (23)

(z1,22,23)ERp, (z1,2,23)ERF

To estimate Sv? —v? on RF, for k = 1,2,..., N(h), first we note that, from (9) and Lemma 4
follows

OOu(xq, z9, z3)
3[10

< e < 03p_2(:v1,:v2,x3), (r1,22,23) € R. (24)

5% (21, x9, x3)
ol6

Let 29 = (210, x20, x30) be a node of the grid RfLO C Ry, where kg be an arbitrary integer number
2 < ko < N(h) and let r¢(z1, z2,x3;x9) be the Lagrange remainder corresponding to this point
in Taylor formula

v? (21,22, 73) = ps(21, T2, T3; 70) + 76(21, T2, T3; T0), (25)

where
Sps (10, 20, 230; o) = v2(210, Z20, T30)- (26)

Then on the basis of (24), we have

R’ h4
57"6(331071’207253055%) < C4W = 04?02- (27)
From (25)-(27), we obtain
h4
max  |Sv? — 0% <y, 2< k< N(R). (28)
($1,$2,$3)6RZ kQ

Let 29 = (210, 220, %30) be a node of the grid R,ll C Rp, and the nodes of operator S lie at the
distance h or v/3h from this point. We estimate r¢ at the nodes of the operator S. To do this we
take a node (x10 — h,x20 — h,x30 + h) and consider the continuous function

~92 2 S S S
(s) =0 (210 — —=, 220 — —, T30+ — |, —V3h < s<V3h, 29
(s) < 10 = 750 T~ 5 T30 \/§> (29)
of one variable s. By estimation (24), we have
< — <
57(s)| < (V3h—s) ", 0<s<Van, (30)

The function
s s

_ s
T6 =T <:C1o—\/§,9320 \f’ T30 + —F= \/§ )

is the remainder term of the representation of the function (29) around the point s = 0 by
Taylor’s formula with the fifth order polynomial.
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By using integral form of the remainder term and (30), we obtain (see [8])

S S S
6 <3310 — ﬁ,xm — %75630 + \/5;330)

For the remaining nodes of the operator S the estimation (31) can be obtained analogically.
Since the maximum norm of the operator S is equal to one, we have

< cgh. (31)

|S76(210, 220, T30; T0)| < c7h®. (32)
By (25), (26) and (32), we obtain

max  |Sv? —v?| < egh?. (33)
(1‘1,1‘2,1‘3)61%,11

On the basis of (21)-(23), (28) and (33), we have

N(h)
(xhzrzr,ljyf%ERh v —v?| < coh® ; % <eht (|| Inh] +1).
O
2.2. The second stage
Let v} be a solution to the following finite difference problem
v = Avy on Ry, v = ¢§? onT%, j=12,..,6, (34)
where 2, j =1,2,...,6 are functions defined by (12).
Lemma 7. On Ry, it holds that,
max v — 03| < eah®(|Inh| + 1), (35)
(z1,22,23)ERy,
where v3 is the function (9) for k =3, v} is a solution to system (34).
Prooi. By Lemma 2, we have
Av’=0 on R, v*=4¢? onT;, j=12.,6, (36)
where functions 1/133 define boundary values in (12), and from (2)-(6) it follows that
e Ch(Ty), 0<A<1, j=1,2,.,6, (37)
V3 =93 on Yy, (38)
on the basis of (36)—(38) that satisfy the conditions of Theorem 5.1 in [9] which follows estimation
(35). O

2.3. The third stage

Let v? and v} be the solution of the difference problems (20)) and (34) respectively. We
approximate the solution of the given Dirichlet problem (1) on the grid Ry, as a solution wuy, of
the following difference problem

up, = Auy, — h—402 — h—6@3 on R (39)
b ST e h T T T
Up = @5 on F;’lw j = 1,2, ...,6. (40)
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Theorem 1. Under the conditions (2)-(6), the estimation

max _ |up —u| < csh®(||Inh| + 1), (41)

(CD1 , L2 ,a?g)GR;L

is valid, where u is the solution of the Dirichlet problem (1) uy is the solution of system (39),
(40).

Proof. Under the smoothness properties of the boundary values specified in (2)—(6), the
solution u of the Dirichlet problem (1) has eighth-order partial derivatives that are continuous
on R, and by using Taylor’s formula with the remainder term in the Lagrange form for each
(z1,22,23) € Ry, we obtain

u(wy, x9, v3) = Au(21, T2, 23) — o=0? — ——v> — r(x1, 29, 73), (42)

where v¥, k = 2,3 are the functions defined by (9)

max ‘T(xlvx%x?))’ < C4h8. (43)
(z1,22,23)ER
We put
en=up —u on Ry,
where uy, is the solution of the finite difference problem (39), (40).

From (39) and (42), and taking into account that u; = u = ¢; on I';j,, we obtain the following
system of difference equations for the error e :

h* h
Eh:AEh-F%( 2—1);21)4—%(1)3—7)2)-%7“ on Ry, (44)
en =0 onTy. (45)

On the basis of Lemma 6 , Lemma 7, and the estimation (43)), we obtain
h4 hS
ﬁ(zﬁ —vi) + ﬁo(v"3 — ) + 7| <esh®(||Inh|| + 1),
where ¢5 = max {c1/36, c2/720,c4}.
Furthermore, from Lemma 5 it follows that for the solution e of problem (44), (45) the
following estimation is true

len| < En, (46)

where £, is a solution of the problem
En = Agp +csh®(|Inh|+1) on Ry, Z,>0 onTY. (47)
It is easy to check that the function g, = ¢5hS(||Inh| + 1)(1*> — r?), where | = \/a? + a3 + a3,
and r = \/a% + 23 + 23 is a solution of problem (47). Then from (46), follows (41). O

3. Numerical results

Let R = {(z1,22,23): 0<z; <1, i=1,2,3}, and let I';, j = 1,2, ...,6 be its faces.
Au=0 on R, wu=p(x1,x,23) on T, (48)

where

o(21, 72, 23) = €**! cosh(4xs) cos(5as) + (2F — 282023 + T0zix] — 28272f + 28) tan™" <Z> +
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+ (sza:g — 56325 + 56x3x5 — 8371:(}5) In /22 + 23,

is the exact solution of problem (48) and ¢ € C™}(T).
We use the following notations:

Un — Us-m|l,
1 = Ul = mgex U = Ul Eon = 4= o
where U is the trace of the exact solution of the continuous problem on €, and U} is its
approximate value obtained by the proposed method.
The numerical results given in Table show that the maximum error of the approximate
solution obtained by the proposed method absolute values convergent of order O(h%Inh), since
26 > E, > 25n/(n+1).

Table. Numerical results for Problem (48)

h=2"" | maxqn [ug—n —u| | E, | 2%0/(n+1)
273 1.537D — 07 48.394 48.000
24 3.176D — 09 60.231 51.200
275 5.273D — 11 62.625 53.333
276 8.420D — 13 63.071 54.857
2-7 1.335D — 14 - -

Conclusion

A new three-stage difference method with an accuracy of order O(h®(|Inh| + 1)), where h is
mesh size, is proposed and justified by using one fourth-order and two second-order schemes for
the approximate solution of the 3D Laplace’s equation. It is assumed that the boundary functions
on the faces are from C™!, and on the edges, their second, fourth, and sixth derivatives satisfy
the compatibility conditions, which follows from the Laplace equation.

The idea of this method can be used to design a new scheme with an order of convergence
O(h¥(|Inh| + 1)), when o; € C%(T;), 1 =1, ..., 6.

Moreover, from the estimation (41) the multiplier |In k| can be removed by replacing in (2)
the condition o; € CT}(T;) with the condition p; € C¥*(T;), 0 < A < 1.

The proposed method can be applied when parallelepiped is used as one of the covering
figures in some version of domain decomposition methods [13], in the composite grids method for
problems in polyhedra and a prism with polygonal base (see [14,15]). Furthermore, this method
can be used to highly approximate the derivatives of the unknown solution of Laplace’s equation
(see [16-19]).
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