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Introduction

We study the inverse spectral problem for the following system of differential equations on a
finite interval

Y (2) = QoY'(2) + Q(z)Y (x) = pY (z), 0<z<T. (1)
Here Y = [y )

Qo = diag(gx],_15, Where gx # 0 are different complex numbers and Q(z) = [qr;(®)] =17
where g;(x) € L(0,T) are complex-valued functions, and gy (2) = 0. The matrix Q(x) is called
the potential.

Inverse problems for systems of the form (1) in different formulations were studied by many
authors. Most of the works are devoted to inverse problems for Dirac and AKNS systems, i.e.
to the case of n = 2 (see, for example, [1]). The main tool for these investigations was the
transformation operator method, and the obtained results are similar to the results for the
Sturm-Liouville operator (see [1,2] and the references therein). These results can be easily
generalized by the same method for n > 2 but only in the exceptional case when all g are real
(see, for example, [3-5]). However, for system (1) of general form with arbitrary complex q
and arbitrary integrable potentials the inverse problem is essentially more difficult to study. The
method of spectral mappings [6] was created for solving the inverse problem in this general case.
In particular, by this method the inverse problem for system (1) on the half-line has been solved
in [7]. The inverse problem for system (1) on a finite interval in the general case has been solved
in [8], where the uniqueness theorem was proved and a constructive procedure for the solution of
the inverse problem was suggested.

In this paper, we study the inverse spectral problem for system (1) with arbitrary complex g
on a finite interval. As the main spectral characteristic we introduce and investigate the so-called
Weyl matrix which is an analog of the classical Weyl function for the Sturm — Liouville operator
and the Weyl matrix introduced in [9,10] for higher-order differential operators. The main method
of the investigation is the method of spectral mappings. Developing the ideas of this method in
connection with systems of the form (1) and using discovered properties of the Weyl matrix, we
provide necessary and sufficient conditions for the solvability of the inverse problem considered.
We will use some notations and facts from [8].

Ktz
K=t

1. Properties of the spectral characteristics

Let the matrices h = [he | ,_75 and H = [He,|¢ 15 be given, where he,, Hg, are complex
numbers, and deth # 0, det H # 0. We introduce the linear forms U(Y) = [Ug(Y )]5 T
V(YY) = [Vg(Y)]z:ﬁ by the formulae U(Y) = hY (0), V(Y) = HY(T), i.e

Ue(Y) = [her, .- henlY (0),  Ve(Y) = [Hey, ..., Hen]Y(T).

Let the vector-functions @y, (z,p) = [@um(z,p)] _ T M= 1,n be solutions of system (1)

under the conditions Ug(®rm) = 6¢m, & = 1,m, V3 (®p,) = 0, n = 1,n —m. Here and in the
sequel, d¢p, is the Kronecker delta. Let Mye(p) = Ue(Prm), M(p) = [Ming(p)]e—1mr P2, p) =
= [®1(z,p),..., Pn(®,p)] = [Pum(z,p)], ;m=17 The Iunctions Mg, (p) are called the Weyl
functions. The matrix M/(p) is called the W/eyl matrix for system (1).

Inverse problem 1. Fix Qo,h, H, i.e. the numbers qi, he,, Hey, k,&, v =1,n are known and
fixed. Given the Weyl matrix M(p), construct the potential Q(z), 0 < x < T.
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It is easy to see that in the general case, the specification of the Weyl matrix does not
determine uniquely the matrices of the linear forms ~ and H. It is possible to point out particular
cases (when the matrices h and H are normalized and have a special structure) for which the
specification of the Weyl matrix uniquely determines not only the potential but also the matrices
of the linear forms. For simplicity, we confine ourselves here to the most principal and difficult
problem of recovering the potential Q(x).

Let C(z, p) = [Ckm(®, p)l}. ;u=17 e a matrix-solution of system (1) under the initial condition
U(C) = hC(0,p) = I (here and below I denotes the identity matrix of the corresponding
dimension or the identity operator in the corresponding Banach space). In other words, the

column-vectors C,(x,p) = [Ckm(x,p)]zzﬁ, m = 1,n, are solutions of (1) under the initial

conditions Ug(Cy,) = 8¢, & m = 1,n. The functions Cy,,(x, p) are entire in p for each fixed z.
Clearly, ®(z, p) = C(z, p)N(p), where N'(p) := M*(p). One has

Mo(p) = (D () At (p), 1 <m <k <, (2)

where

Amr(p) == (=1)™* det[Ve(Cy)] 1<m<k<n, Applp) =1

E=1,n—mv=m,n\k’

It is known that the p-plane can be partitioned into sectors S; = {p : argp € (6;,6;4+1)},

J=0,2r—1,0< 6y <6 <...<b_1 <2m in which there exist permutations ij, = iy(S;) of
the numbers 1,...,n, such that for the numbers Ry = Rj(S;) of the form Ry = 3;, one has

Re(pRl) <...< Re(pRn), p e Sj. (3)

We put 8ok == 0, Sjronr = S, k € Z, and denote I'; = {p : argp = 60;}. Clearly,
Ljiorr :=1'j, k € Z. We note that the number 27 of the sectors S; depends on the location of
the numbers {5 },_1;; on the complex-plane, and 1 < r < n(n — 1)/2. For example, if all 3 lie
on a line containing the origin, then r = 1. Denote

ank(jl, s Jm) = det[hfvju]§:m7k; =T 1<m<k<n,
le(]l”]m) = lem(jlavjm)7 98 = 17
Q}n(jm+1a N det[vaju]ﬁzl,n—m, W ot

Let
Q (iryeoyim) 0, QL (ipng1yenin) 0, m=1,n—1, j=0,2r—1, (4)

where i), = i1(5;) is the above-mentioned perturbation for the sector S;. Condition (4) is called the
regularity condition. Systems, that do not satisfy the regularity condition, possess qualitatively
different properties for investigating inverse problems and are not considered in this paper.

Fix j = 0,2r — 1. For p € I, strict inequalities from (3) in some places become equalities.
Let m; = m;(j), pi = pi(j), i =1, s, be such that for p € T},

Re(pRmi—l) < Re(pRmi) == Re(pRmr‘r}?i) < Re(pRmi+pi+1)7 =15,

where Ry = Ry(S;).
Denote Nj := {m : m = mi,mi+p1—1,...,mg,ms+ps —1}, Jp, := {j : m € Nj},
Ym = U Tj, ¥ = C\ v is the p- plane without the cuts along the rays from ~,,. Clearly, the
JE€Im
domain ¥, = |JSm, consists of sectors S, each of which is a union of several sectors S; with

v
the same collection {R¢},_ 1. Let I'j 5 :={p: dist (p,I;) < o}, 0 >0, be a strip along the ray
2r—1 2r—1
I, and let Yo = U Tjo = {p: dist(p,ym) < o}. Denote I'} := |J Tj,, I'':= U Tj.
Jj€JIm J=0 J=0
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Denote by Ay, = {pim}i>1, m = 1,n — 1, the set of zeros (with multiplicities) of the entire
n—1
function Ay (p), and put A:= |J A,,. The numbers {p, }i>1 coincide with the eigenvalues of

m=1

the boundary value problem L,, for system (1) under the conditions Ug(Y') = V,(y) =0, £ = 1,m,

n—1
n = 1,n —m. Denote Gs,, = {p: [p—pim| =0, l 2 1}, Gs = () Gsm. Let A = {P?m}l>1’
=1

m = 1,n — 1, be the eigenvalues of the “simplest” boundary value}oroblems LY for system (1)
with Q(z) = 0. The following properties of the Weyl matrix were established in [8].

Theorem 1. I. The Weyl functions Mx(p), k > m are meromorphic in p with the set
Av = {pim }1=1 of poles. For |p| — oo, argp =6 € (0;,0;11),

My (p) = My, + O(p™),
where MO, = (Q0 (i1,...,im)) 100 (i1,...,im). Moreover,
|Mmk(p)‘ < 067 pE Gé,m- (5)
2. There exists o > 0 such that Ay, C Yo Moreover, Ay, = |J Apy, where Ap; € T is
Jj€Im
the subsequence of A, located in the strip I'j s, j € Jpm.
3. The number ny,q of zeros of Apm(p) in the domain 5, , == {p: p € Yme,lp| € [a,a+1]}
is bounded with respect to a.
4. There exist positive numbers ry — oo such that for sufficiently small 6 > 0, the circles

|p| = rn lie in G for all N.
5. For m =1,n—1, one has pym = pY,, + O(I"1) as | — oco.

We consider the differential system
U Z(x) = ~Z'(2)Qo + Z(2)Q(z) = pZ(z),
where Z = [2;];,_15; is a row-vector. Clearly,

Z(x)lY () — 0 Z(2)Y (z) = % (Z(QT)Q()Y(:U)). (6)

[t follows from (6) that if /Y (z,p) = pY (z,p) and ¢*Z(x, u) = pZ(x, p), then

(0~ )2 (e, )Y (.p) = (7, 1)QY (2. ))- )

Put U*(Z) = Z(0)h*, V*(Z) = Z(T)H*, where h* = [h*] ke = Qoh7t, H* =

= [Higlp et = QoH . Then U*(2) = [U;(2),....U{(Z)], V*(2) [ :(2),- Vi (2)],
where Uy _¢1(Z2) = Z(O0)[hieli 17 Vien(2) = Z(D)Hiely 1

Denote R}, := —Rn_pm+1. Let vector-functions @7, (z,p) = [®f,, (@, p)lp—1m, m = Lin

be solutions of the equation ¢*Z = pZ, satisfying the conditions Ug(@;“n) = O¢m, & = 1,m,
V;]*((I);fn) = 07 n= 17n —m. We let q)*(l‘,p) [(I);’; m+1(‘/1: p)] T_[(D:(L—m-q-l’k(xvp)}m,k:l,in'

2. Solution of the inverse problem

[t was proved in [8] that the specification of the Weyl matrix M (p) uniquely determines
the potential matrix Q(zx). In this section, we provide a constructive solution to the inverse
problem of recovering the potential matrix Q(x) from the given Weyl matrix M(p). For this
purpose, we reduce our nonlinear inverse problem to the solution of the so-called main equation,
which is a linear equation in a corresponding Banach space of sequences. We give a derivation of
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the main equation and prove its unique solvability. Using the solution of the main equation we
provide an algorithm for the solution of the inverse problem along with necessary and sufficient
conditions for its solvability. For simplicity, in the sequel we confine ourselves to the case when
the functions Ay, (p), m = 1,n — 1, have only simple zeros (the general case requires minor
technical modifications).

For py € A we define the matrix F'(po) = [Fjk(po)l; x5 via

F(po) = —(Niy(p0)) " N1y (po)-

Here and below fy(po) = (f(p))fj):po denotes the k-th Laurent’s coefficient for the function f(p)
at the point p = po. In particular, fi_yy(po) = Res f(p).

Denote As(po) = [Fuj(pO)]j:m7 v=n—sm> 5= 1 n—1, Ag=A, = 2.

Property Si. If po ¢ A, then Fpi1(po) = ... = Fyi(po) = 0, j = 1,m. I}, moreover,
v<m—1,p0¢ A, po €Avi1().- N Am—1, po &€ A, L <v+1<m < n, then Fy, i1(po) # 0.

Property Sy. The following relation holds rank As(pp) <1, s=1,n— 1.

Fix N > 1. Denote by Wy the set of functions f(x) such that f)(z), v = 0,N — I, are
absolutely continuous on [0,7]. We will write ¢ € Viy if Q(z) € Wx. We will solve the inverse
problem in the classes Vy.

Let £ € Viy and let the Weyl matrix M(p) for system (1) be given. We take an arbitrary
off-diagonal potential Q(z) € Wy. We agree that everywhere below if a symbol a denotes an
object related to @, then @& will denote the analogous object related to @, and & := a — @.

Choose o > 0 such that A' := AUA c T'L. Let w be the contour (with a counterclockwise
circuit) which is the boundary of T'}, ie. w:= {p: dist(p,T!) = o}.

Denote J := {p: dist(p,T'!) > o}. Then the following relations hold

O(z, p) = @(x, p) 21 /@(x,u)é*(x,u)cgoci(x,p)/ﬂfp, peJ, ®8)
O*(2,0)Qo®(x,p)  *(2,0)QuP(x,p) _
p—0 p—10
- le/wtb*(x,@)Qoq)( 1) ®* (z, 1) Qo®(x, p)(;t—Q(jl(L/)—;L)’ p,0 € J. 9)
Denote § .
=) <|/’l,k71 — Prk—a| + Y sk — %kl\), 1>1,
k=2 s=1

where Yskl ‘— st(pl,k—l)a ’?skl :— st(ﬁlk 1) s = 1,]€— 1, k = 2,77,, l = 1. It is possible to
choose Q(x) such that & = O(I=N=1) for | — oc.

For po € A! we introduce the matrix D(z, po, p) = [Dsm(, po, p)] by the formula

s,m=1,n

‘i’*(w,ﬂ)QO‘i’(%P))(m :(i’?_m(%PO) Ci>2‘0>(x,p0)

D(:L'va?p) = (
p— (p = po)? p = Po

)Qo‘i)(fﬁvp)-

l1=po
~ k k ~ . .
Denote piro = piks pik1 = Pk, Viy = Vski> Vil = Vski- We introduce the matrices

vie(2) = [0 (@)t pmzr P1e(2) = (G0 (2)) i1, ke

BE(CC,p) = [‘Pl]:‘m(livp)]k:Zn,m:l,n’ ‘Plﬁ(x p) [P ( P ]k:2,n7 m=1,n’

G 19)(10=0) (®) = (G 1020) @ km=zmr G2 t0z0) (@) = (G 1020 (@) k=g
Ilg>1, e,6=0,1,
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by the formulae

Qi (@) = Qi g0 (@, pri—1),  PiE () = g (0) (2, Prr—1,6),
o

1 k—1
x s Plk—1,e5 P )7 Pllzm(x7 ,0) = Z’Yli:szm(xa Plk—1,e, p)a
s= 1 s=1

G](czs)(zoso)(fﬂ) = PZZ,<0> (@, Plo,m—1,e0) G“’&Zﬁaoso)(w) = 151’27@ (@, Pro,m—1.20)-

Denote wy,(y) = | exp(pr,m—1Rm)]|, | € Mn-1j, 7€ Jm—1, Ry = Rm(S;). Using (8) and taking
our notations into account we obtain

b(@,p) = @(@,0) + > (w10(@) Po(a, p) = o1 (2) P (w, p) ). (10)

>1

It follows from (10) that

Ploco (T) = Plyeo (T +Z <<Plo )G (10)(1020) () — 211 ()G (11 1020) (@ )); (11)

>1
lo>1, e =0,1.

For each fixed = € [0,T7, relation (11) can be considered as a system of linear equations with
respect to (), I > 1, e =0, 1. But the series in (11) converges only “with brackets”. Therefore,
it is not convenient to use (11) as a main equation of the inverse problem. Below we will
transfer (11) to a linear equation in a corresponding Banach space of sequences (see (15)).

For this purpose we introduce the matrices

i () = [ ()],
by the formulae
i (@) = (G ()~ (o (2) — @it (2)), Vit (@) = (un(x)) el (@), (12)
HES 1000 (2) = €tk (@) g ttom (2)) ™ (G 100y (2) = Gl 1oy (@) )
H(lo)(lol)( ) = Guuk () (uigm ()~ G’(ﬁlron)(m)( )
HET 100y (@) = k() (€ tigm ()~ ( (65000) () — Glidyony (@) — G(z1)(100)(~"3)+GZT)(101)($)>,

HE o1y @) = 0t (@) (it (@)™ (GG 101y @) = Gy oy @)

[km

1,n,k=2n> H(IE)(lOEO)(x) - H(ls)(loso)(x)]k,m:ﬂ7 l’ l() > 1’ €,60 = 07 1’

Similarly, we define the matrices 4. (z) and ﬁ(le)(logo)(x). Then

Wik @) <O i) < O, (13)
5 Ccg
|H(I€lg(1050)(x)|a |H(kf;§(loeo)(x)‘ < Tl +1° (14)

Let V be a set of indices u = (l,€), I > 1, e =0, 1. For each fixed x € [0,T], we define the vector

Y(x) = [Wu(T)]uev = [Yi0(2), Y11 (2)]i>1 = [Y10, Y11, Y20, Y21, - - -,

and the block matrix

H0)1,0) (%) Ho)(151) (%)

H(ﬂj’) = [Huy(x)]u,vev =
H1y100)(2)  Hanyaony () Lip>1

9
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= (l,e), wv={(lp,e0), ¢€,e0=0,1.

Analogously, we define the matrices ¢ (x) and H(z). In view of our notations, relation (11)
transforms to the form

QZ)loEo( wloao + ZM@ H(l€ loea)( )7 lalo = 17 £,60 = 07 17

or, which is the same, B )
Y(z) = ¢(x)(I + H()). (15)

According to (13) and (14), the series in (15) converges absolutely and uniformly in z € [0, T].
Starting from (8), we arrived at (15). By similar arguments, starting from (9) one can get
the relation )
(I+H(z)){—H(x)) =1

Interchanging places for @ and Q, we obtain
(I —H(z))(I+H(x))=1.

Let us consider the Banach space m of bounded sequences a = [ay]uey With the norm
||| = sup,ey |aw|. It follows from (14) that for each fixed = € [0, 77, the operators I + H(z) and
I — H(z), acting from m to m, are linear bounded operators, and

i 3
H H T
IWM!@HC@?;FM+1

Thus, we have proved the following theorem

Theorem 2. For each fixed x € [0,T], the vector 1)(x) € m satisfies the equation (15) in
the Banach space m. Moreover, the operator I + H(x) has a bounded inverse operator, i.e.
equation (15) is uniquely solvable.

Equation (15) is called the main equation of the inverse problem. Solving (15) we find the
vector ¥ (x), and consequently, the functions ¢;-(x). Then, by (10) we calculate ®(z, p). Denote

(0) = 5 [ (0¥ (@0 — Qo (0,10 (16)

2me J,,

Theorem 3. The following relation holds
Qz) = Q=) +e(2). (17)

Proof. Differentiating (8) and using (7), we calculate
Fap) = (o) + o [ )@ (@)@l )M
) ) 27TZ w bl ) 'LL _ p
1 S

2w J,,

Since ®(z, p) is a solution of system (1) it follows that ®(z, p) = (pBo — B(z))®(x, p), where
Bo = Qy*, B(x) = BoQ(z). Similarly, & (z, p) = (pBo — B(z))®(x, p). This yields

(pBo — B(x))d(x, p) = (pBo — B())®(z, p)+

o [ B = B )8 Qoo )P = L | bl )b i
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Replacing here ®(z, p) from (8), we calculate

B)b(r, ) = 5 / Bo®(ar 1) (, 1) Qo p)ep — 5 / B, 1) 8" (. 1) B (. p) .

Multiplying this relation from the left on Qy, we obtain Q(z)®(z,p) = e(z)®(z,p), and
consequently, (17) holds. O

The solution of the inverse problem can be found by the following algorithm.

Algorithm. Given the Weyl matrix M(p).

1. Choose Q(z), and construct () and H(x).

2. Find ¢ (x) by solving equation (15).

3. Calculate ®(z, p) via (10), where ¢;.(x) is constructed from (12).

4. Construct Q(x) by (17).

Let us now formulate the necessary and sufficient conditions for the solvability of the inverse
problem. Denote by W the set of meromorphic matrices M (p) = [Myk ()] 1=17> Mmk(p) = O
for m > k, having only simple poles A = |J,, A,, (in general, the set A is different for each
matrix M(p)) and such that (5) is valid and for each py € A the properties S; and Sy hold.

Clearly, if £ € Viy and M(p) is the Weyl matrix for ¢, then M(p) € W.

Theorem 4. A matrix M(p) € W is the Weyl matrix for some { € Vi if and only if the
following conditions hold:

1) (asymptotics) there exists { € Vi such that Y& < oo

2) (condition S) for each fixed x € [0,T)] the linear bounded operator I + ﬁ(m), acting from
m to m, has a bounded inverse operator;

3) e(x) € Wy, where e(x) is defined by (16).

Under these conditions, the potential Q(z) is constructed by Algorithm.

The necessity part is proved above. In the sufficiency part, we have a matrix M(p) € W
satisfying the conditions of Theorem 4. Using the Algorithm we construct the potential Q(z), i.e.
we construct ¢ € V. By similar arguments as in [8], one can check that the matrix M(p) is the
Weyl matrix for 4.

Remark. The inverse problem from a system of spectra.

The zeros Ak := {pimi} of the entire functions A,,x(p) coincide with the eigenvalues of the
boundary value problems L, for system (1) with the boundary conditions

UL(Y) = .. = Upna(Y) = Up(Y) = Vi(Y) = .. = Vi (Y) = 0.

The inverse problem of recovering the potential from the system of spectra is formulated
as follows: given the spectra A,, and A, of the boundary value problems L,, and L,
(m=1,n—1, k> m), construct the potential Q(x). Since the functions A,,x(p) are uniquely
determined by their zeros, it follows from (2) that this inverse problem can be reduced to the
inverse problem from the Weyl matrix.
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