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Abstract. The subject of mathematical study and modelling in this paper is an inbound call center that
receives calls initiated by customers. A closed exponential queueing network with customer retrials and
impatient customers is used as a stochastic model of call processing. A briel review of published results
on the application of queueing models in the mathematical modeling of customer service processes in call
centers is discussed. The network model is described. The possible customer states, customer routing,
parameters, and customer service features are given. The allocation of customers by network nodes at
a fixed time fully describes the situation in the call center at that time. The state of the network model
under study is represented by a continuous-time Markov chain on finite state space. The model is studied
in the asymptotic case under the critical assumption of a large number of customers in the queueing
network. The mathematical approach used makes it possible to use the passage to the limit from a Markov
chain to a continuous-state Markov process. It is proved that the probability density function of the
model state process satisfies the Fokker — Planck — Kolmogorov equation. Using the drift coefficients of
the Fokker — Planck — Kolmogorov equation, a system of ordinary differential equations for calculating the
expected number of customers in each network node over time can be written. The solution of this system
allows for predicting the dynamics of the expected number of customers at the model nodes and regulating
the parameters of the call center operation. The asymptotic technique used is applicable both in transient
and steady states. The areas of implementation of research results are the design of call centers and the
analysis of their workload.
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AnHoTtanus. [IpenmMeToMm MaTeMaTHUECKOTO HCC/IELOBAHUS U MOIEJNUPOBAHUS B NaHHOH paboTe sIBJSETCS
KOJII-LEHTP, KOTOPbIH MPUHUMAaET BXOASLIME 3BOHKH, HHUIMUPOBAHHbIE KJIUEHTaMH. B KauecTBe croxacThue-
CKOH MOJiesIH TpoLecca 00C/yKUBAHHsI 3BOHKOB MPeNJiaraeTcsi HCIoAb30BaTh 3aMKHYTYIO 3KCIIOHEHIHAbHY O
CeTb MacCOBOTO OOCJ/YXKHBasi C MOBTOPHBIMH BbI30BAMU M HeTEepIeNUBBLIMU 3asiBKaMHu. [IpuBeneH KpaTKui
0030p 0omyOJUKOBAHHBIX PaGOT MO MPUMEHEHHUIO MOZEJEeH MacCOBOrO OOC/YKHUBAHUS MPH MaTeMaTHUECKOM
MOJIETUPOBAHHUHU TIPOLIECCOB 0OCTYKHBaHHs KJIHEHTOB B KOJI-LeHTpax. OnucaHa ceTeBas Mofiesb, yKa3aHbl
BO3MOXKHbIE COCTOSIHHUSI, MapLIpyTH3allus, HapaMeTpbl U 0COGEHHOCTH 06CayKUBaHUs 3asiBOK. CocTosiHue
MOJIEJIH MOJIHOCTBIO XapaKTepU3yeTcs pachpelieieHHeM 3asiBOK 10 BO3MOXKHBIM CHCTEMaM MacCOBOTO 00CJY-
XKVBaHHS B 3aaHHBI MOMEHT BpeMeHH. BekTop, ompenesisiolinil cOCTOSIHHE CETEBOH MOIEJH, MPeICTaBIseT
coboit nernb MapkoBa ¢ HelpepbIBHBIM BpeMeHeM M KOHEYHBIM YHCJIOM COCTOsiHHE. Mogesb uccienyercs B
ACHMITOTHYECKOM CJ1yuae — MPU KPUTHUECKOM TIPEITON0OKEHHH OOJIbIIOTO YHCIA 3asBOK B CETH MacCOBOTO
o6cayKrBaHus. Mcnonb3yeMblfl MaTeMaTHUECKHH MOLXOM MO3BOJSIET OCYIIECTBUTD TpelesbHbIH epexomn
oT uenu MapkoBa K HelpepbiBHOMY MapKOBCKOMY mpoleccy. [lokasaHo, UTO IJIOTHOCTb paclipeiesieHust
BEPOSITHOCTEH Tpollecca COCTOSTHUSI MOJENH yIoBJeTBopsieT ypaBHeHH0 Pokkepa — [lnanka — Konmoroposa.
Hcnonb3yst koadduiueHTsl cHoca ypaBHeHus Pokkepa — [Inanka — KosaMoroposa, MoXXHO 3anucaTb CHUCTEMY
OObIKHOBEHHBIX AU(QepeHInalbHbIX YPaBHEHHH /s pacueTa CpeJHero 4ncja 3asBOK B KaxKAOM U3 Y3J0B
CeTeBOM MOJEJH C TeueHHeM BpeMeHH. PellleHHe 3TOH CHCTEMbl MO3BOJISIET MPOTHO3UPOBATH AMHAMHUKY
0KH1aeMOTO KOJIMYECTBA KJHEHTOB B y3JlaX CETH W PEry/JHPOBaThb MapaMeTpsl paboThl KoJi-LeHTpa. [Ipe-
MMYIIEeCTBOM BHIOPaHHOIO MeTOfA UCCJeOBAHHUS SIBJSETCS BO3MOXKHOCTb pacueTa CpelHHUX XapaKTePHUCTHK
MOJIeJIM KOJIJI-LEHTPa KakK B MePeXOIHOM, TaK U B CTALlMOHAPHOM pexXuMe. Pe3ysibTaThl HCCIen0BaHUSI MOTYT
ObITb UCTIOJb30BaHbl MPU MPOEKTUPOBAHUN KOJIJI-LEHTPOB U aHa/NH3€e UX 3arpyKeHHOCTH.

KuaroueBbie ci10Ba: ceTb MaccoBOro 06C/yKUBaHUS, KOJJI-LEHTP, MATEMATHUECKOE MOIEJNHPOBAHHE, aCHMII-
TOTHUYECKUH aHaJU3, HeTepreJsiuBasl 3asiBKa, MOBTOPHBIN BHI30B
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Introduction

A call center is a centralized customer service department for many businesses that deals
with incoming and outgoing phone calls via voice communication channels. It is referred to as
a “call center” because traditionally, customer service is based on phone support as the main
method of contact between customers and companies. The calls are handled by a team of advisors,
otherwise known as agents. The article [1] focuses on reviewing the state of call centers research.

Telephone customer service organizations should track key performance indicators to measure
the efficiency of call centers and agents. In particular, they strive to improve call handling time,
call waiting time, and placing calls by agents. The quality and operational efficiency of these
telephone services must be exceptional in order to meet the needs of the customers [2,3]. Agents
of a large best practice call center have to cater to thousands of phone calls per hour. The waiting
time for delayed calls must not exceed a few seconds. To achieve high levels of service quality
and efficiency, it is necessary to accurately describe the reality of call center operation, and to
mathematically model this reality.

Mathematical models of call centers are of great value, but at the same time, each of them
is somewhat limited in its ability to characterize system performance. Traditionally, queueing
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theory can be used to analyze call centers’ efficiency and optimize their structure. Indeed,
there is a natural fit between standard queueing models and telephone systems [4]. Queueing
systems, particularly, Markovian ones, are widely used for call centers’ modelling, analyzing their
performance, planning, and managing [5-8]. Queueing systems with impatient customers [5, 8],
retrial queueing systems [6,7,9], and many others have emerged from the need to mathematically
model the behavior of telephone service customers, to find the optimal staffing for call centers
in order to guarantee maximum profitability and a desired grade-oi-service, measured in terms
of acceptable waiting and blocking. A tandem queue is suitable for modeling call centers with
interactive voice response machines [10]. Queues with general service are widely used to model
call centers, e.g., a two-phase hyperexponential approximation can be applied for service time
distribution [11]. In the article [12] a multi-server queueing system with a generalized phase-type
service time distribution is used as a model of a call center with a call-back option.

The subject of mathematical study and modelling in this paper is an inbound call center
that receives calls initiated by customers looking for information support, technical support,
billing questions, reservation support, order-taking functions, and other customer service issues.
First, an arriving call is routed towards the automatic call distribution switch, whose function
is to distribute the inbound calls among the agents according to the customer’s need. When
the topic of the client’s request goes beyond the scope of the current agent’s specialization,
the client is redirected to specialists who are competent in resolving the issue. Thus, calls are
routed according to their specificity between agents of various specializations. Therefore, the
organizational structure of a call center can be graphically represented by a network diagram
showing the call routing between call center agents on different service issues according to their
specifics.

Queueing networks are effective mathematical models for studying discrete probabilistic
systems with a network-like structure. A queueing network is a collection of interdependent
queuing nodes that provides processing and transfer of jobs or customers. Everyone knows that a
telephone customer who receives a busy signal repeats the call until the required connection is
made. As a result, the flow of calls circulating in a call center consists of two parts: the flow of
primary calls and the flow of repeated calls. It is natural to take into account a flow of impatient
customers who find that the residual waiting time is too long and leave the queue forever. These
considerations emphasize the need to use the network of retrial queues with impatient customers
as a proper modelling of customer behavior in a call center. So, the purpose of this paper is call
center mathematical modeling and analysis of call processing efficiency using a closed exponential
queueing network with retrial and impatient customers. An asymptotic analysis of the model is
performed, which implies an approximation method of queueing network study under the critical
assumption of a large but limited number of customers [13-15].

1. Model description

The focus of this paper is the queueing network model of a large call center. We set K as the
total number of customers. The closed network consists of n + 1 exponential m;-linear queueing
nodes (systems) S;, i = 1,n + 1, and K-linear hypothetical node Sy, which plays the role of a
dependent source of arriving customers or an external environment. It should be noted that,
unlike the others, the node 5,41 is the retrial queueing system without a waiting buffer. The
node Sp+1 has the orbit O,42 which plays the role of a virtual waiting room for K customers.
Each customer can be in one of the following nodes (states) at any given point in time:

e Sy —no need to turn to the call center;

e 5,11 — a customer call is serviced by one of the m, 11 lines of the automatic call distribution
switch;

e 0,12 —a customer call is waiting in the orbit;

e S; —a customer call is handled by one of the m; agents supporting the ith type service
issue or is queued in the unlimited waiting buffer, i = 1, n.
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The customer transition from the node Sy to the node S, 41 with probability py,41) = 1
corresponds to a customer call to the call center. We assume that the arrival of customers from
So to Sp41 forms the Poisson process of rate A(¢)ko(t), the rate parameter is proportional to the
number of customers in the source ko(t). Inbound call flow is non-stationary.

From the node S,1, the call is routed to the node S; with probability p(, 1y, @ = 1,n, or
with probability p(,,1)o to the external environment Sy in case of an erroneous customer request.
After the end of call service in the node S;, i = 1,n, the customer is transferred to Sy with
probability p;g, in case his request is completely fulfilled or redirected to specialists on another
service issue to the node S;, j = I,n, with probability p;j, i # j, ¢, = 1,n. Customers are
served according to the FIFO rule. The service facility of the node S; consists of m; identical
servers and service times are exponentially distributed with rate parameter p;, i.e., ,u;l is the
mean service time, ¢ = 1,n + 1.

Taking into account the peculiarities of telephone services, it is assumed that the customer
waiting time in the queue of the node S; is limited by an exponential random variable 7; with
an expected value of 77;1, i = 1,n. At the same time, customers who leave the queue are called
impatient. If during time 7; the call is not answered, then it is lost and transferred to the external
environment Sy with a probability ¢,0 =1, i = 1, n.

[t is worth noting some important features of the automatic call distribution switch which is
modeled by the retrial queueing node S,,4+1. If an incoming customer call finds some of my, 1
servers iree, he instantly occupies one of them and leaves the node after service. On the other
hand, any request that finds all servers busy upon arrival is required to leave the service area
but it is not lost, it is transferred to the orbit O, 2. The customer in the orbit repeats his
call and retries reaching the free server again aiter an exponentially distributed time 7,;,, with
parameter . Thus, we are assuming that the repeated attempts follow the classical retrial policy,
where the repetition times of each customer are assumed to be independent and exponentially
distributed with the rate parameter «. In addition, we suppose that the customer’s time in the
orbit is limited by an exponential random variable 7, , with an expected value of 77;%2- After
this time 77,5, the customer leaves the orbit and is transferred to the external environment Sy
with probability g(,42)0 = 1. We also assume that inter-arrival periods, service times, waiting
times, and retrial times are mutually independent.

Probabilities p;; are elements of a transition matrix P = (pij)m+t2)x(nt2) for serviced
customers, i,j = 0,n + 1. Non-zero elements of the matrix P are py(,41) = 1 and p;j, @ # j,

- n+1
i =1,n+1, j = 0,n. The matrix P is a stochastic matrix, so ) p;; = 1. Probabilities g;;

7=0

are elements of a transition matrix @ = (gij) (n+2)x(nt2) for impatient customers 4,j = 0,n + 1.
Non-zero elements of the matrix Q are g0 = 1, i = 1,n. Retrial customers are circulating
between the system S,,+1 and the orbit O,42. Impatient retrial customers transfer from O, 12
to Sp. We have to keep in mind the non-zero elements of transition matrices. The routing of
serviced customers (solid line), impatient customers (dashed line), and retrial customers (long
dash) is shown in Fig. 1.

The allocation of customers by possible states at time ¢ fully describes the situation in the
call center at that time. Accordingly, the allocation of customers by queueing nodes completely
determines the state of the queueing network. Taking into account the above-described, the state
of the network model under study at time ¢ is represented by a continuous-time Markov chain on
finite state space:

k(t) = (k1(t), ka(t), s knt1(t), knga(t)),

where k;(t) is the number of customers in the node S;, i = 1,n + 1, ky,42(¢) is the number of
customers in the orbit, at time ¢, ¢ € [0, +00). Obviously, the number of customers in the external

n+2
environment Sy is ko(t) = K — > ki(t).
i=1
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ORBIT

Fig. 1. The state-transition diagram

2. Asymptotic analysis of the network model

Asymptotic analysis implies an approximate method for studying a queueing network under
the assumption of a large number of customers K and is based on the theory of diffusion
approximation of Markov processes [16]. In this paper, the passage to the limit from a Markov
chain k(t) to a continuous-state Markov process £(t) is considered. Unlike discontinuous processes,
continuous processes in any small-time interval At — 0 have some small change in the state
Az — 0.

Theorem 1. /n the asymptotic case of a large number of customers K the probability
density function p(zx,t) of the random process

k() _ (’fl(t) ka(t) kns1(t) kn+2(t)>
K K’ K’ 7 K ' K

£(t) =

provided that it is differentiable with respect to t and twice continuously differentiable with
respect to x;, i = 1,n + 2, satisfies up to 0(52), where ¢ = % the multidimensional Fokker —
Planck — Kolmogorov equation

op(z,t) _ o e M2 g2
o ; oz, (Ai(z, t)p(z,t)) + 5 ”Z iz, (Bij(z,t)p(z, 1)), (1)
with drifts
n+2
j=1

n+2
An+1(x t)— —Hn+1 mln(ln+1a$n+1 +A ( sz> n+1_$n+1)+7xn+29(ln+l_-Tn+1)7 (3)

n+2
Appo(x,t) = At <1 - Z x2> = 0(lng1 — Tng1)) = YZn20(lng1 — Tng1) — Mug2Tnie,  (4)

m

- — 1 >0
8i; is the Kronecker delta, l; = ?Z i,j=1,n+2 0(z) = { R

is the Heaviside function.
0, =<
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Diffusion coefficients B;j(x,t) are not given in this paper because of their cumbersomeness
and also because they are not used for further calculations.

Proof. Let a vector k = (k1,ko,...,knt1,knt2) be formed by components k;(t) = k;,
i =1,n+ 2, at some time point ¢. In this case, we will say that the queueing network under
study is in the state (k,t). Let P(k,t) denote the probability that the network is in the state
(k,t). Denote I; as a (n + 2)-vector with zero components excluding i-th, which equals to 1.
Consider all possible state changes of the Markov process k(t) in the short time At:

e from the state (k — I,,41,t) the process transfers to (k, At + t) with probability

n—+2
At) <K =S ki 1) O(1min i1 — kny1 + 1)AL + o(Al),
i=1

that corresponds to the customer call arrival from the nodee Sy to the nodee S,,+1 when there
are free lines of the automatic call distribution switch;
e from the state (k — I,,12,t) the process transfers to (k, At + t) with probability

n+2
A(t) (K S ki 1) (1 = 0(mps1 — kni1)) AL + o(At),
=1

that corresponds to the customer transition to the orbit due to the fact that all lines of the
automatic switch are busy;
e from the state (k + I,,y2 — I, 41,t) the process transfers to (k, At + ¢) with probability

’y(kn+2 + 1)9(mn+1 — kpy1 + 1)At + O(At),

that is, the arrival of a retrial call from the orbit to a iree line of the automatic switch;
e from the state (k + I,,42,t) the process transfers to (k, At 4 t) with probability

nn+2(kn+2 + 1)At + O(At),

in case the time spent by an impatient customer in the orbit while trying to reach a free server
of the automatic switch has expired;
e from the state (k + I;,t) to the state (k, At +t) with probability

(M«zpio min(mi, k; + 1) + mqio(ki +1-— mz)e(k‘z +1-— ml)) At + O(At>,

that is, the customer departure from the node S; to the node Sy, when his request is fully
satisfied, ¢ = 1,n + 1, or the transition of an impatient customer from S; to Sy, i = 1, n;
e from the state (k + I; — I;,t) the process transfers to (k, At +t) with probability

iPij min(mi, k; + 1)At + O(At),

that corresponds to the transition of the serviced customer from the node S; to the node S,
t=1,n+1, 5=1n;
e from the state (k,t) to (k, At +t) with probability

n+2
1-— ()\(t) (K - Z k1> 0(mnt1 — kny1)+
i=1

n+2
+A(t) (K - kz) (L= 0(mni1 = kny1) + Vhn20(mai1 — kng1) + 1nsokngot
i=1

n+l n+1
+ Z(ﬂz’pio min(my, ki) + nigio (ki — m;)0(k; —my;)) + Z pipij min(mg, ki)) At + o(At),
=1 ij=1

if the model state does not change;
e from other model states transfer to (k,t + At) is possible with probability o(t).
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Taking into account state changes listed above and using the law of total probability, the
following set of equations is valid for the probability P(k,t) = P(k(t) = k):

n—+2
P(k,t + At) = ( Z ki + 1) (Mns1 — kna1 + 1) P(k — Ly, t)At+
n+2
<K Z ki + 1) O(mpg1 — kng1))P(k — Ingo, t) At+
+ (kn+2 + 1)9(mn+1 - knJrl + 1) (k + In+2 - n+17 )AtJr
n+1
Anng2(knya + Pk + Lo, )AL+ > puipio min(my, ki + 1) P(k + I, t) At+
=1
n+1
+ Z mqio(k‘i +1- mz)e(k@ +1-— ml)P(k‘ + I;, t)At—l—
i=1
n+1n+1
+ Z Z iDij min(m;, k; + 1) P(k+ I; — I, t)At+
i=1 j=1
n+2
4+ 11— (A(t) (K - Zkz> 9(mn+1 — kn+1) +
=1
n—+2
(K Z ki ) 0(mni1 — knt1)) + Vhnt20(mns1 — kng1)+
n+1 n+1
+nnt2kni2 + Z pipio min(mg, k;) + Z niqio (ki — mi)0 (ki — m;)+
=1 1=1
n+1
+ Z WiDij min(mi, k‘l) At P(k, t) + O(At).
Q=1

Let us denote the following differences:

Aoy Pk, t) = P(k — Ing1,t) — P(k,t),  AgpmioyP(k,t) = P(k — Lya,t) — P(k,1),
AgP(k,t) = P(k+ I;,t) — P(k,t), Ay jP(k,t)=P(k+1, —I;,t) — P(k,t), i,j=1n+2.

Assuming that At — 0, we obtain the set of Kolmogorov difference-differential equations for
state probabilities:

OP(k,t =
ét ) = )\(t) <K — Z:kl> 9(mn+1 - kn+1)AO(n+1)P(k7t)+

n-—+2
+ <)\(t) (K — Z k; + 1> 9(mn+1 — ]{Jn+1 + 1)—
i=1
n+2
- A t) <K — Z k‘,) 0(mn+1 — kn+1)> P(k - In+1,t)+
i=1
n+2
(K Z ki ) 0(mp41 — kn+1))A0(n+2)P(k5a t)+

n+2
( Zk +1> O(mpt1 — kng1))—
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n+2
- (K - Z k‘z> (1 = 0(mnt1 — knt1)) | Pk — Ini2,t)+
i=1

+7]€n+29(mn+1 - kn+1)A(n+2)(n+1)P(kv t)+
+ [V(knt2 + 1)0(mpi1 — kng1 + 1) — vhni20(mng1 — kpg1)] ¥
XP(k+ Iny2 — Ing1,t) + Aoy P (ks ) nt2knse + MaroP(k + Liga, t)+
n+1 n+1
+ > papio min(mi, ki) Aig P(k, t) + ) (papio min(mi, ks + 1) — pipio min(my, ki) P(k + I, )+
i=1 =1
n+1
+ > migio(ki — mi)0(ki — ma) Ao P(k, )+
i=1

n+1

+ 3 Imigio(ki + 1 = m)0(k; + 1 — mg) — migio(ki — mi)0(ki — my)]
=1
n+1n+1
XP(k‘ + I, t) + Z Z WiDij min(mi, ki)AijP(kJ, t)—|-
i=1 j=1
n+1n+1
+ Z Z [/«Lipij min(mi, k; + 1) — WiDij min(mi, k‘l)] P(k‘ + I, — Ij, t). (5)
i—1 j—1

The resulting equation cannot be solved analytically for large n. Call centers undoubtedly
handle a large number of customer calls. In this regard, we consider the important asymptotic
case of a large number of customers in the model. Let us pose the problem of studying the
probability distribution of the state vector k(¢) under the critical assumption of a large number of
customers K in the queueing network.

Suppose we are interested in the properties of the relative process £(t) = % when K
becomes very large. Vector £(t) indicates the relative proportion of the company’s customers
who contacted the call center and how calls are distributed across model nodes at time ¢. In
time At — 0, the possible changes in process £(t) are e;, where e; = I; - ¢ = IF Assuming that
K — oo we have e; — 0, and the vector £(¢) will be a continuous-time continuous-state Markov
process. A probability density function of £(¢) is defined as

p(z,t) = lim Pz < &) <z1 46,y pro <&() < Tpyo +€) _

e—0 gn+2
— lim P(le < k‘l(t) <Kzxi+1,...Kzyi9 < kn+2(t) < Kxpyo+ 1)
50 gn+2 ’
ie.
K""2P(k,t) — p(z,t), where z € X, (6)

n+2
X = {m— (@1, 02, Tny2) 12 20, i=Ln+2 > < 1}.
i=1

Realizing the asymptotic transition (6) for the equation (5), we obtain the following partial
differential equation

815, =AM K (1 - ;%) O(lnt1 — $n+1)A0(n+1)p($a t)+

0 <<1 — j:if xz) O(lnt1 — $n+1))

O0xpy1

+A(t) p(T — eny1,t)+
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n+2
<1 — Zajz> 1 — n+1 - $n+1))A0(n+2)p($at)+

) (1 N :p>

=1

+A (1 - a(ln+1 - x?ﬁ»l))p(-r — €n4-2, t)+

0Ty
FYE 2 120(lns1 = Tt 1) A2y (n41)P(@, 1) + ¥0(Ing1 — n1)p(@ + €npa — ens1, 1)+

12 KTni28 (1 2)0P(@, ) + Nng2p(@ + ensa, 1)+

s, s, Omin(l;, x;)

+K Z HiPio mln(lu $1)A10p x, t "' Z HiPio O (l' + €4, t)+
i=1 i=1 v
n+1 n+1
0 Ty — li 0 T; — li
+E> migio(wi — 1)0(xi — 1) Aiop(,t) + Y migio ( 8):c~( ))P(m + €, 1)+
i=1 i=1 ¢
n+1n+1 n+1n+1 amln(l . )
+K Z Z HiPij mln(lz, xz)Asz z, t + Z Z HiDij # (-77 +e; — ey, t) (7)
i=1 j=1 i=1 j=1 v

If p(x,t) is twice continuously differentiable function with respect to x, then we can use the
following Taylor series:

ap(z,t) & Ip(a, )
ox; 2 2z

p(z te;,t) =p(z,t)te +o(e?
Op(x,t) 8p (z,t) >

plx+e —ejt) =plx,t)+¢ (
/ Ox; Ox;j
e [ Ppla,t)  Ppla,t)  plz,t) 2
- )9 ’ ’ = 2.
3 ( Ox? 0x;0x; * O3 Fole), hg=lnt

Substituting the above-mentioned Taylor series into equation (7), having grouped the terms
in the resulting equation, we conclude that the compact mathematical expression (1) is valid. The
theorem is proved. O

The probability distribution of the vector £(¢) given by the probability density p(z,t) is a
complete and exhaustive characteristic of the network model state at time ¢. However, such an
exhaustive characteristic cannot be found, since equation (1) is not explicitly solvable. From a
practical point of view, it is enough for us to know what the “average value” of £(¢) is. For this
reason, we confine our study to finding expected values Eg, (t) = E(&(t)), i = 1,n+2. It is
known [15,17] that the expected value Eg,(t) is determined with an accuracy of O(¢?) from a set
of ordinary differential equations:

dE¢ (1)
dt

here A;() are drifts given by formulas (2)—(4). Then the expected number of customers in each
node of the network model Ey, (t) = E(k;(t)) = E(K&;(t)) can be found from the set of equations:

dE,(t) _ KA, (1Eki(t)> . i=1,n+2. (8)

= Ai(Eg (), i=1n+2,

dt K

Taking into account (2)—(4), (8) and the transition matrices of the network model, the
expected number of customers Ej, (¢) in node S;, i = 1,n+ 2, can be found by solving the
following set of equations:

dEk (t) n+1

Jj=1
J#i
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—0i( Bk, (1) = mi)0( B, (1) —mi), i=1,n;

Phas®) __ min(men, By, (0)+
n+2
AW (K -, (t)) Omnss — Bty (1)) 7B (00mmss — By () (9
=1

n—+2
dE’f:g?(t) = A\(t) (K — ; Ey, (t)> (1 = 0(mnt1 — B, (8))—

_7Ekn+2 (t)e(mn-‘rl - Ekn+1 (t)> - 77n+2Ekn+2 (t)
3. Numerical example

Consider the queuing network model of a call center with n = 4. Let the number of customers
be equal to K = 50000.

Let the operation of the call center be specified by the following parameters. The structure of
the network is set by the following non-zero elements of the transition matrix: pgs = 1, p1g = 0.7,
p12 = p13 = p1a = 0.1, poo = 0.8, p21 = pa3 = 0.05, pag = 0.1, p3o = 0.75, p31 = 0.07, p32 = 0.15,
p3s = 0.03, pgo = 0.9, py1 = 0.03, pgo = 0.04, py3 = 0.03, psg = 0.15, ps; = 0.1, pse = 0.15,
ps3 = 0.2, ps4 = 0.4. The number of node servers is m; = mg = 6, my = 8, my = 4, ms = 20.
The service rates are pu; = 70, po = 40, pus = 22, pg = 60, pus = 270. The waiting rates are
m =mn2 =5, n3 =mn4 =3, ng = 10. The retrial rate is v = 50. The initial placement of customers
is Ey,(0) = 50000.

Firstly, consider the case when the arrival rate is constant A = 0.0117. The inbound call flow
is stationary. Let us solve the set (9) by numerical methods using Maple software. Figure 2
shows a graphical solution of (9). It is possible to predict the mean number of customers at each
network node with time. Figure 2 demonstrates that the process quickly reaches a steady state.
The largest number of customers accumulates in the node S4. The servers in most nodes of the
network are idle in the mean.

Secondly, consider the case when the arrival rate is not constant and it changes according to a
wave-like law (seasonal process) A(t) = 0.002 cos(wt/12) + 0.0095. Figure 3 shows the dynamics
of the expected number of customers in the network nodes. In this situation, the number of
customers varies depending on the arrival rate. Obviously, the number of agents needs to be
adjusted.

104~ 7 e 109, " "\
] I - l/\\ ’ |
81~ 84\ it N iy
/ ‘ ot i
6+l 61 \ /‘. } R
\ I
i\ / ! i / '\
l \\ s N // I |
4 Hq LT s Lo ! L
. N A N, R ~
.............................................. —_ N
- - vene®” —_— te. .
24— 2 \\_// \\// ~
W
0 0

8 - S ——= 8 == 8§ —-5 = -5

Fig. 2. Dynamics of Ej,(t) when the arrival rate
is constant
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Fig. 3. Dynamics of Ej, (t) when the arrival rate
is not constant
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Conclusion

In this paper, the network stochastic model of a call center was presented as a queueing
network with customer retrials and impatient customers. The model was investigated in the
asymptotic case of a large number of customers. The results make it possible to predict the
dynamics of the expected number of customers by model states, regulate the parameters of the
call center operation, analyze the call center workload, and make decisions. They are applicable
with a specified accuracy O(¢?) in both the transient and steady state, this is a fundamental
advantage of the used asymptotic method.
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