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AnHOoTamua. MHOXecTBO OHHApHBIX OTHOLIEHWH, 3aMKHYTOe OTHOCHUTEJbHO HEKOTOPOH COBOKYIHOCTH
orepauuil HaJ OTHOLUEHWsIMH, oOpa3yeT anrebpy, Ha3plBaeMylo a/ire6poil OTHOILeHHH. Teopusi anre6psl
OTHOIIIEHUH SIBJISIETCS CYIECTBEHHOH YacThl0 COBPEMEHHOH ajreOpanueckoil JIOTHKH M UMEeT MHOTOUYHC-
JIeHHble NPUJIOXKEHUS B TEOPUM Noayrpyni. [Ipy paccMOTpeHHH KJaccoB anre6psl OTHOLIEHWH eCTECTBEHHO
BO3HHUKAIOT CJedyloline MpobJeMbl: HAHTH CUCTEMY aKCHOM IJisi 9THX KJacCoB, HalTH 6a3uC TOXKIECTB
(KBa3UTOXKIECTB) [JsI MHOrooGpasuil (KBa3UMHOT000pa3suii), OPOXKIEHHBIX 3THMHU KJaccaMu. B ctatbe 060-
3HayeHHble MPo6JeMbl pellaTcs AJs KJacca MOJyTrpyn OTHOLIEHUH ¢ GUHAPHOH acCOLMAaTUBHOH omnepaluer
TIPSIMOYTOJIBHOTO TIPOU3BEIEHHUS], Pe3ybTaTOM KOTOPOH SIBJISETCS NE€KapTOBO MPOU3BENEHHE MEPBOH NPOEKLUH
MIePBOr0 OTHOLIEHUS] HA BTOPYIO MPOEKLHI0 BTOPOrO.

KaroueBblie cioBa: ajnre6pa OTHOIIEHHH, MPUMHUTHBHO-TIO3UTHBHAS OTepalHs, MHOrooOpasue, KBa3UMHOTO0-
o6pasue, MOJNYrpymnna, 4aCTUYHO yIOPSAOUEHHas MONyTpymnna
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Introduction

Let Rel(U) be the set of all binary relations on a base set U. A set of binary relations
® C Rel(U) closed with respect to some collection € of operations on relations forms an algebra
(®,Q) called an algebra of relations. The theory of algebras of relations is an essential part
of modern algebraic logic and has numerous applications in the theory of semigroups (see the
remarkable survey [1]).

Denote by R{Q2} the class of all algebras isomorphic to the ones whose elements are binary
relations and whose operations are members of 2. Let V{Q2} be the variety and let Q{Q} be the
quasi-variety generated by R{Q}.

The following problems naturally arise when the class R{Q} is considered.

Find a system of axioms for the class R{Q}.

Is the class R{Q} finitely axiomatizable?

Find a basis of quasi-identities for the quasi-variety Q{}.
Is the quasi-variety Q{Q} finitely based?

Find a basis of identities for the variety V{Q}.

Is the variety V{Q} finitely based?

Does the class R{Q} form a quasi-variety?

Does the quasi-variety Q{§2} form a variety?

Numerous studies have been devoted to solving these problems for various classes of algebras
of relations. The first mathematician who treated algebras of relations from the point of view
of universal algebra was A. Tarski [2]. He considered algebras of relations (Tarski’'s algebras
of relations) with the following operations: Boolean operations U, N, ~ ; operations of relational
product o and relational inverse ~!; constant operations A (diagonal relation), @ (empty relation),
V = U x U (universal relation). He showed that the class R{o, ', U,Nn, =, A, @, V} is not a
quasi-variety and the quasi-variety generated by this class forms a variety [3]. R. Lyndon [4]
found the infinite base of this variety and D. Monk [5] showed that it is not finitely based.

A little later, B. Jénsson considered the class R{o, ~*,N, A}, proved that it forms a quasi-
variety, found its infinite base of quasi-identities, and posed problems 4 and 8 for this class [6].
The negative solutions to these problems were obtained in [7] and [8] respectively.

Operations on relations are usually determined using first-order predicate calculus formulas.
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Such operations are called logical. It is known that classes of algebras of relations with logical
operations are axiomatizable [1]. One of the most important classes of logical operations on
relations is the class of primitive-positive operations [9] (in other terminology — Diophantine
operations [10]). An operation on relations is called primitive-positive if it can be defined
by a formula of the first-order predicate calculus containing in its prenex normal form only
existential quantifiers and conjunctions. Note that the set-theoretical inclusion C is compatible
with all primitive-positive operations. Thus, any algebra of relations with primitive-positive
operations (®,2) can be considered as partially ordered (®,€,C). The corresponding abstract
class of partially ordered algebras will be denoted by R{2, C}. The variety and the quasi-variety
generated by the class R{Q, C} will be denoted by V{2, C} and Q{€2, C} respectively. Problems
1-8 for the class R{2, C} are formulated in the same way.

One of the most important associative primitive-positive operations is the operation of
relational product o that is defined as follows:

poo={(u,v): (3t)(u,t) € pA(t,v) € c}.

It is well known that the class R{o} coincides with the class of all semigroups and the class
R{o, C} coincides with the class of all partially ordered semigroups. There are many other binary
primitive-positive operations on relations (see, for example [11]). It is interesting to consider
problems 1-8 for algebras of relations with these operations. The paper provides a solution to
these problems for the class of semigroups of relations with the operation of the rectangular
product.

1. Main results

We concentrate our attention on the following primitive-positive operation:
pxo={(u,v): (Ft,w)(u,t) € pA(w,v) € g}

[t is easy to see that this operation is associative. Note also that p x o = prip x proo, where
pric = {u: (3t)(u,t) € p} is the first projection of p and prooc = {v: (Jw)(w,v) € o} is the
second projection of o. Since prip X proo is a rectangular relation, we will treat this operation as
the operation of the rectangular product.

A partially ordered semigroup is an algebraic system (A4, -, <), where (4, ) is a semigroup
and < is a partial order relation on A that is compatible with multiplication, i.e., x < y implies
rz <yz and zx < zy for all z,y,z € A.

The main results are formulated in the following theorem and corollaries. Their proofs are
based on the description of quasi-equational theories of algebras of relations with primitive-positive
operations [10].

Theorem. The quasi-variety Q{x,C} forms a variety in the class of all partially ordered
semigroups. A partially ordered semigroup (A,-,<) belongs to the quasi-variety Q{x,C} if and
only if it satisfies the identities:

T < $2, (1)
TYz < TZ. (2)

Corollary 1. The quasi-variety Q{x} forms a variety. A semigroup (A,-) belongs to the
quasi-variety Q{x} if and only if it satisfies the identities:

(zy)? = zy, (3)
TYZ = TYTZ, (4)
TYZT = TZYT. (5)
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Corollary 2. The class R{x,C} does not form a quasi-variety. For a partially ordered
semigroup (A,-,<), the following three conditions are equivalent.
1. (A,-, <) belongs to the class R{x,C}.
2. One of the following conditions holds:
a) (A,-, <) satisfies identity (1) and the identity

TYZ = TZ; (6)
b) (A,-,<) contains the zero element o, satisfies identity (1) and the axioms:

Yy # 0= xyz =22, (7)
o< x. (8)

3. (A,-, <) satisfies identity (1) and the axioms:

ryz = xy Vyw = wy =y, 9)
TYy=yr=x = < 2. (10)

Corollary 3. The class R{x} does not form a quasi-variety. For a semigroup (A,-) the
following three conditions are equivalent.
1. (A,-) belongs to the class R{x}.
2. One of the [ollowing conditions holds:
a) (A,-) satisfies identity (6);
b) (A,-) contains the zero element o and satisfies axiom (7).
3. (A,-) satisfies axiom (9).

Note also that if the semigroup (®, o) of rectangular relations does not contain a zero element,
then the operations o and x coincide. It follows that the equivalence conditions 1 and 2a of
Corollary 3 can be obtained from the results of [12].

Note that the next problem is still open.

Problem. Let (A, -, <) [respectively, (A,-)] be a partially ordered semigroup [respectively, a
semigroup| such that the conditions of Corollary 2 [respectively, Corollary 3| hold, and the set
A is finite. Is it possible to isomorphically represent (A,-,<) [respectively, (A,-)] as a partially
ordered semigroup (®,x*,C) [respectively, as a semigroup (®,x*)] of relations on an appropriate
finite set U.

2. Proofs of results

Step 1. Let us consider the relationship between considered identities and axioms.

Lemma 1. Identities (1), (2) imply identities (3)-(5). Identity (6) implies identities (2)—(5).
Identities (3)-(5) imply the [ollowing three identities:

xyzt = x2yt, (11)
zy = xy?, (12)
zy = z2y. (13)

Proof. First of all, we show that identities (1), (2) imply identities (3)—(5). Indeed,
xy (gl) q(ry)? and (xy)? = wyxy (2 vy, ie., (vy)? = zy (3). Further, xyxz (2 xyz and
TYz %) (ryz)? = ryzayz (2 ryxz, i.e., zyz = zyrz (4). Since zyzw (<1) (ryzz)? = zyzoayze (2
< xzyx and zzyx %) (r2yr)? = xzyrveyr (2 xyzr, we have zyzax = xzyx (5). It is clear

that identity (6) implies identities (2)—(5). Let us show that identities (3)—(5) imply identities
(11)—(13). Indeed, zyzt @ xyzat ©) xzyxt @ zzyt (11); xy @ (vy)? = zyxy @ zyy = x2y® (12);

(3) (11) (12)
wy = (vy)? = wyxy = zryy = 2%y = 2%y (13). O
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Lemma 2. Conditions 2 and 3 of Corollaries 2 and 3 are equivalent.

Proof. Note that we can represent axiom (6) as (=(Vw) yw = wy = y) = zyz = zz. It
follows that this axiom is equivalent to identity (6), if A does not contain a zero element, and it
is equivalent to axiom (7) otherwise. Axiom (10) just expresses axiom (8) as a universal formula
of the first order language. O

Let us consider the set A = {x1,...,2,,...} of individual variables that are interpreted as
elements of a semigroup. A semigroup term p is a word in the alphabet A, i.e., an expression of
the form xj,xj, ..., _,x; . For convenience, we will also use other letters of the Latin alphabet
as variables.

Suppose that p = xj ;... 2, ,x; be the term of a semigroup that satisfies identities
(11)=(13). Then without loss of generality, we can assume that all variables z;,,...,z;  , are
different and different from variables z; ,x;,,. Moreover, we can also presume that variables
Zjy, ..., %, , can be arbitrarily permuted. In what follows, we will use these properties without
special mentions.

Step 2. Let (®, %, C) be the partially ordered semigroup of relations with the operation of the
rectangular product. Since p* o = prip X preo, we have p C prip X prop = p* p, i.e., identity (1)
holds. Note that pxmxo = prip X proc = px*o, if m # @, and px 7+ o = & otherwise. It follows
that identity (2) holds. It also follows that if @ ¢ ®, then (®, %) satisfies identity (6). If @ € @,
then @ is a zero element and axioms (7) and (8) hold. Thus, according to Lemmas 1 and 2, we
obtain that all conditions of Theorem and Corollaries 1-3 are necessary.

Further, it is easy to see that for U # @, the Cartesian square of the semigroup (Rel(U), )
of relations contains the zero element (&, &) and does not satisfy axiom (7). It follows that the
classes R{x} and R{x, C} do not form quasi-varieties.

Step 3. The proof of the sufficiency of conditions of the Theorem is based on the result
of [10]. Let us give some definitions and notations to formulate this result. For any formula
©(20,21,71,...,7m) of the first-order predicate calculus having m binary predicate symbols
r1,...,Tm and two Iree individual variables zp, z1, we can associate an m-ary operation F, on
Rel(U) defined in the following way:

Ftp(plw"apm) ={(u,v) €U x U : p(u,v,p1,...,pm)},

where ¢(u, v, p1,...,pm) means that the formula ¢ holds whenever zg, z; are interpreted as u, v,
and rqy,...,r, are interpreted as relations p1,..., p, from Rel(U). Recall that an operation on
relations is called primitive-positive if it can be defined by a first-order formula containing in its
prenex normal form only existential quantifiers and conjunctions. Let us describ primitive-positive
operations by using graphs [9].

Let N be the set of all natural numbers and N = NU {0}. A [labeled graph is a pair
G = (V(G), E(Q)), where V(G) is a finite set, called a vertex set, and E(G) C V(G) xNxV(G)
is a ternary relation. A triple (u,k,v) € E(G) is called an edge from u to v labeled by k, and it

will be graphically represented by u- % . An input-output-pointed labeled graph is a structure
G = (V(G), E(G),in(G),out(G)), where (V(G), E(G)) is a labeled graph, in(G) and out(G) are
two distinguished vertices (not necessarily different) called input and output vertices respectively.
The input-output-pointed labeled graph G with in(G) =i and out(G) = o is also denoted by G*°.
In what follows, we shall usually speak simply of graphs if it does not lead to confusion. The
concept of graph isomorphism is defined in a natural way. All graphs will be considered up to
isomorphism.

For given w € V(G), the number of edges of the form (u,k,v) [respectively, (v,k,u)] we
denote by deg™(u) [respectively, deg™ (u)].

Given two input-output-pointed labeled graphs G = (V1, E1,inj,out;) and Gy = (Va, Ea,ing,
outy), a mapping f: Vo — Vi is called a homomorphism from Gy to G if f(iny) = ing,
f(outy) = outy, and (f(u),k, f(v)) € E1 whenever (u,k,v) € E2. We write G; < Gy if there
exists a homomorphism from G5 to Gj.
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Let FF = F, be a primitive positive operation determined by a formula ¢. Then the input-
output-pointed labeled graph G = Gr = G, associated with F' is defined as follows (see [5]).
Let {0,1,...,n} be the set of all subscripts of individual variables of ¢. Put G = (V, E, in, out),
where V' = {vg,v1,...,0,}; in = vy, out = vy; (i,k,j) € E if and only if the atomic formula
(2, 2;) oceurs in ¢.

Note that the graph G, = (V, E,in, out) corresponding to the considered operation * of the
rectangular product can be described in the following way:

V = {wvo,v1,v2,v3}, E = {(vo,1,v3),(v2,2,v1)}, in =19, out=wvy,
. (1) 2
n = vg- — V3 v+ — v1 = out.

Let G = (V, E,in,out) and Gy = (Vi, Ek, ing,outy) (k=1,2,...,n) be graphs with pairwise
disjoint vertex sets. The composition G(G1,Ga,...,G,) is the graph constructed as follows [5]:
take G and substitute every edge (u, k,v) € E by the graph G}, identifying the input vertex iny
with u and the output vertex outy with v.

For any semigroup term p define the graph G(p) = (V(p), E(p), in(p), out(p)) in the following
inductive way:

1) if p = xx, then G(p) is the following graph: in- 5 out;

2) if p = p1p2, then G(p) = G (G(p1),G(p2)).

According to the construction, for any term p = xj xj, ... z;,,_,x;, the graph G(p) has the
following form:

ln:UOL> ﬁ) ']m—l. ’]_m>v1:out

Let G be a labeled graph, u,v € V(G) = {vg,v1,...,v,}, and @ be an input-output-pointed
labeled graph. Without loss of generality, we can suppose that V(Q) = {wo,w1,...,wy},
in(Q) = wo = u, out(Q) = wy = v, and V(G)NV(Q) = {u,v}. The labeled graph (V(G)UV(Q),
E(G) U E(Q)) denote by G[u,v,Q]. Note that the edges set of G[u,v,Q)] can be represented

as {vo, V1, ..., Un, Untls -« s Untm—1}, Where vy,11 = wa, ..., Uptm—1 = wy,. Factually, the graph
Glu,v, Q] is obtained from the graph G by “gluing” the graph @ to the vertices w and w.
Define an n-system to be a pair w = («, ), where o, 8 : {1,...,n} — N° are mappings,

alk), B(k) <2+ (k—1)(m—2) for all k=1,...,n, and m is the number of vertices of the graph
that determines the considered operation on relations (for the operation * we have m = 4 and
a(k), B(k) < 2k).

Given an n-system w = («, /3), construct by induction the sequence of graphs Gy C --- C G, =
= Gw. Put Go: Vo (ig V1, and for k = 1, oo, n put: Gk = Gk_l[va(k),vﬁ(k),G(xgkx2k+1)].

The following proposition presents the result of [11] formulated for the class R{x, C}. This
result gives an infinite basis of quasi-identities for the quasi-variety Q{x, C}.

Proposition. A partially ordered semigroup (A,-,<) belongs to the quasi-variety Q{*,C}
if and only if it satisfies the quasi-identity
n

(A pr < z2r22k41) = 71 < o (14)
k=1

for every m-system w = («, 8) and arbitrary terms py,...,p, such that G < G(po) and
Va (k) VB (k)
G < G(pg).

Step 4. We are ready to prove the sufficiency of the conditions of the Theorem. Let w = («, 3)
be the n-system and po, p1,...,p, be the terms such that Gi)""* < G(pp) and GZ‘ff)’vB(” < G(pr)
for k = 1,...n. This system corresponds to the sequence graphs Go C G; C --- C G, = G,
where G, = (Vi, Ef) for k =0,...,n. According to the construction, for any k& < n we have that
Vi = {vo,v1, ..., vak, vor41} and

Ex = {(vo,1,v1)} U {(Ua(i);Qi;UQi-H), (v24, 21 + 1,7)5(1-)) ci=1,...,k}.
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Let us Proof by induction on k that a(k) is even, B(k) is odd, and deg~vy; = 0, deg™vg; > 0,
deg*vgﬂ_l >0, d€g+1)22‘+1 =0 for any ¢+ =0,..., k.

Let & = 1. Since G,""""™ < G(py), we have that p; = 21 or p; = 22, and a(1) = 0,
B(1) = 1, deg” vy = 0, degTvg = 2, deg- vy = 2, degtvy = 0, deg~ vy = 0, degtvs = 1,
deg~vs =1, degTvs = 0.

Suppose now that it holds for £ — 1, and let us show that this is true for k. Since
GrWPM < G(pg), according to the definition of a graph homomorphism, we get that
degt vy > 0, deg~vgpy > 0. Then according to the induction assumption we get a(k) is
even, (k) is odd, and deg vy = 0, degtvy; > 0, deg voir1 > 0, degTvyy1 = 0 for any
i=0,... k.

Let (A,-, <) be a partially ordered semigroup satisfying identities (1) and (2). Suppose that
the premise of quasi-identity (14) holds for some values of the variables x1 = aj, x2 = as,

T3 = a3, ...,T2p = A2n, TIn4+1 = A2n+1, i.e., pk(a) < A2k A2k+1 for all & = 1,...,n, where
a = (a1,az,...,a2,41). Let po = xj 24, ... x5, ,x; . Note that G, < G(po) il and only
if {le,sz,...,$jm71,$jm} - {$1,$2,...,x2k,1’2k+1}, Lj,, = L2541 for some j < k such that

B(j) =1, and xz;, = x1 or xj = xo; for some i < k such that a(i) = 0. It follows that the
equality x;, = x;,, is possible only if x;, = x;,, = 21, otherwise we can assume that all variables
of py are different.

Let max(py) be the greatest k such that at least one of the variables xoy or xoriq is included
in the term pyg. Let us prove by induction on max(pg) that a1 < po(@). If max(py) = 0 then
p =21 or pg = 7. Thus, using identity (1) we obtain a; < po(@). Suppose now that a3 < po(@)
holds for maxz(pg) = k — 1, and let us show that this is true for max(po) = k.

If both variables oy, xox41 are included in pg, then the following cases are possible:

1) po = voprok+12j, - . - T4, x4, , then using the induction assumption we get

<pr(@)agy - .- aj,,_ a4, < akGpi1Gj; - - - aj,_, a5, = po(a@);

2) po = T, TopTok 41T, - - - Tj,,_, x4, , then using the induction assumption we get
ao < a;,pi(@)ag, - - - aj,,_1j,, < Q51 A2%A2%410jy - - - Ay Aj,, = Po(@);
3) Po = Tj,Tjy ... Tj,,_sTokToky1, then using the induction assumption we get
ag < aj,aj, . .. a5, ,Dr(d) < aj,aj, ... aj, ,a2,025+1 = Po(Q);
4) po = xokxj, . .. x4, Tok+1, then a(k) =0 and (k) = 1. It follows that
Gzo,m < G(pptjy - - xj,, D),

and by the induction assumption we get

(2)
ag < pr(@)aj, ... a5, pr(@) < agkaop+1aj, - . . a4, A2%02%+1 <

< W2k Ajo + + - Qg 1 A2%41 = po(ﬁ).

If only one of the variables x9; or xory; is included in pg, then the following cases are
possible:

5) po = Tk, ... T4, _,xj,, then using the induction assumption we get

)
ap < pr(@)ajy - aj, 0, < Q2kQ2k410js - - - Qj,, 1 Qj,, < A2k - - - A, G, = Po(a);

6) po = =, ok, . .. T4, _,xj,, then using the induction assumption we get

)
ao < ajy pr(@)aj, . .. aj, ,aj, < aj02ka211055 - - - Qj,, GG, S Ajy A2y - - - A, A, = Po(@);
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7) po = Tj, Tok41Tjs - - - Tj,,_1 T, > then using the induction assumption we get

)
ao < ajypr(@)ag, - .- aj,_,aj, < ajaa2k41a5, - - aj,, G, <

< @y A2k 41y - - - Wjy 1 @, = P0(@);
8) po = Tj,Tj, - .- j,,_ T2x+1, then using the induction assumption we get

)
ap < aj,aj, - - - az,,_pr(@) < aj aj, ... ajz,, Gopaoky1 < A5y Qg - - A, Agp1 = po(@).

Thus, we have proved that the partially ordered semigroup (A, -, <) satisfies quasi-identities
(14). Therefore, according to the Proposition we have (A4,-, <) € Q{x,C}. This completes the
proof of the Theorem.

Step 4. Let us prove the sufficiency of the conditions of Corollary 1. Suppose that a semigroup
(A,-) satisfies identities (3)-(5) and A? = {a?: a € A}. We define the relation < on the set A
by setting

={(z,y) € Ax A?: 2 =yxy}U{(z,2) € Ax A: z € A}.

Let us show that (A, -, <) is the partially ordered semigroup satisfying identities (1) and (2).
The reflexivity of the relation < follows directly from the definition.

To prove the transitivity assume that x < y and y < z. Without loss of generality, we
can suppose that z # y and y # z. Then z? = yay, y?> = zyz and y> = y, 22 = z, hence

2 _ — (1) _ o2, (12 , .
XT° =YY = 2YZX2YZ = ZZYTYZZ = ZYITYz = 2T z zxz, i e x < 2. Thus < is transitive.
Assume that z <y, y < x and x # y. Then 2% = yay, y?> = xyr and 22 = z, y? = ¥, hence

r = x? = yay = y’ry® = vyrrryx = ryz = y?> = y. This contradicts the assumption x # y.

Thus, < is a partially order relation.

Let us show that the relation < is compatible with multiplication. Suppose that x < y and

r # y. Then 22 = yay and y? = y, hence (zz)? D py @ 2, = yxyz (2 yxyz® 3 (W) YZTZYZ

and (yz)? 2 @ yz. Thus, zz < yz. Further, (zz)? I . YTy 1) s yxy ) zyzrzy and

(zy)Q(: zy. Thus, zz < zy.

2 (12) o

Since z? '= 2?z2? and (2?)? © x2, we have z < 2. Since (wyz)? © xyz = Ty ©
3,,,3 (1) 3)

= 23y2? = zzxyzrz and (2)? = 1z, we have zyz < xz. Therefore, (4, -, <) satisfies identities
(1) and (2), hence (4,-,<) € Q{*,C} and (A4, ) € Q{x}. This completes the proof of Corollary 1.
Step 5. Let us prove the sufficiency of the conditions of Corollary 2 and 3.

Lemma 3. Let {U; : j € J} be a family of pairwise non-intersecting sets and U =
=U{U; : j € J}. If a partially ordered semigroup (A,-,<) is a subdirect product of a family
{(®;,%,C) : j € J} of partially ordered semigroups of relations on Uj;, and satisfies identity
(6), then (A,-, <) isomorphically embedded in (Rel(U),*, Q).

Proof. Let ¢; : A — ®; be the corresponding surjective homomorphisms from A on the
components of the direct product [[{®; : j € J}. According to the properties of homomorphic
images, we see that all components (®;,*,C) satisly identity (6). Hence, for all j € J

we have @ ¢ ®; or ®; = {@}. It follows that (A,-,<) is subdirect product of the family
{(®;,%,C):j€ Jo}, where Jo={jeJ: ¢ P;}.

For given a € A, put p§ = ¢;(a). We define a mapping ¢ : A — Rel(U) in the following way.
Put p(a) = U{prip§ : 7 € Jo}xU{prepj : j € Jo}, il a? = a, and p(a) = U{pf 5 € JotulU{e(b) :
b2 = b < a} otherwise. Let us show that ¢ is an isomorphic embedding (A4, -, <) in (Rel(U), %, C).

Note that p(a) NU; x U;j = pf for all a € A. It follows that ¢(a) C ¢(a) if and only if a <.
Forver, since (ab)? = ab, we have

ab) = U{prlp‘}b :j€Jot x U{prgp?b cjedot =

Martemarvka 327



@ WU3B. Capar. yH-T1a. Hos. cep. Cep.: Marematuka. MexaHuka. VIHgpopmatuka. 2024. T. 24, Bbin. 3

= (Hprilprip§ x praph) - 5 € Jo} x | {pralprip} x prap}) - 5 € Jo} =

= (J{pripg 5 € Jo} x ({prash : 5 € Jo}) = prig(a) x prag(b) = ¢(a) * o(b).
0

Lemma 4. Suppose that (A, -, <) satisfies identities (1) and (6). Then (A,-,<) belongs to
R{x, C}.

Proof. If (A,-, <) satisfies identities (1) and (6), then according to the Theorem we have
(A,,<) € Q{x,C}. In respect that the class R{x,C} is axiomatizable [34], we obtain that
(A,-,<) is a subdirect product of a family of partially ordered semigroups from R{x, C}. Hence,
according to Lemma 3, we obtain that (A, -, <) belongs to R{x, C}. O

Lemma 5. Suppose that (A,-) satisfies identity (6). Then (A,-) belongs to R{x}.

Proof. If (A,-) satisfies identity (6), then according to Lemma 1 it also satisfies identities
(3)-(5). Let < be the partial order relation constructed in the proof of Corollary 1. Then by
Lemma 4, we have (A, -, <) € R{x, C}. Therefore, (A,-) € R{x}. O

Lemma 6. Suppose that (A,-) contains the zero element o and satisfies axiom (7). Then
(A, ) satisfies identities (6) or ab # o for all a,b # o.

Proof. If there exist elements a # o and b # o such that ab = o, then for all x,y # o we

have xay @ xy, by @ xy, and xaby = o, hence xy 0 xyxy = rayxby @ xaby = xroy = o. It
follows that zyz = xz for all x,y,z € A, i.e., (A,-) satisfies identities (6). O

Suppose that (A, -, <) contains the zero element o and satisfies identity (1) and axioms (7)
and (8). Put B = A\{o}. According to Lemmas 4 and 6, we can suppose that xy € B for
all z,y € B, and (B, -, <) satisfies identities (1) and (6), hence (B,-, <) belongs to R{x,C}. It
means that there exists an isomorphism F' from the partially ordered semigroup (B,-,<) to
some partially ordered semigroup of relations (®,%,C) and @ ¢ ®. Putting F (o) = &, we get
the isomorphism from (A4, -, <) to (P U{@}, x, C). Therefore, (A, -, <) belongs to R{x, C}. This
completes the proof of Corollary 2.

Suppose that (A, -) contains the zero element o and satisfies axiom (7), B = A\{o}, and let <
be the partial order relation on B constructed in the proof of Corollary 1. Extend the relation <
on A by putting o < a for all a € A. Then (A4, -, <) satisfies the condition 3 of the Theorem, hence
(A,-, <) € R{,C}. Therefore, (A,-) belongs to R{x}. This completes the proof of Corollary 3.

References

1. Schein B. M. Relation algebras and function semigroups. Semigroup Forum, 1970, vol. 1, iss. 4,
pp. 1-62. https://doi.org/10.1007/BF02573019

2. Tarski A. On the calculus of relations. The Journal of Symbolic Logic, 1941, vol. 6, iss. 3, pp. 73-89.
https://doi.org/10.2307/2268577

3. Tarski A. Contributions to the theory of models, II1. Indagationes Mathematicae (Proceedings),
1955, vol. 58, pp. 56-64. https://doi.org/10.1016/S1385-7258(55)50009-6

4. Lyndon R. C. The representation of relation algebras, II. Annals of Mathematics, 1956, vol. 63,
iss. 2, pp. 294-307. https://doi.org/10.2307/1969611

5. Monk D. On representable relation algebras. Michigan Mathematical Journal, 1964, vol. 11, iss. 3,
pp. 207-210. https://doi.org/10.1307/mmj/1028999131

6. Joénsson B. Representation of modular lattices and of relation algebras. Transactions of the American
Mathematical Society, 1959, vol. 92, pp. 449-464. https://doi.org/10.1090/S0002-9947-1959-
0108459-5

7. Haiman M. Arguesian lattices which are not type-1. Algebra Universalis, 1991, vol. 28, pp. 128-137.
https://doi.org/10.1007/BF01190416

8. Andréka H., Bredikhin D. A. The equational theory of union-free algebras of relations. Algebra
Universalis, 1995, vol. 33, pp. 516-532. https://doi.org/10.1007/BF01225472

328 HayuHbiii otaen


https://doi.org/10.1007/BF02573019
https://doi.org/10.2307/2268577
https://doi.org/10.1016/S1385-7258(55)50009-6
https://doi.org/10.2307/1969611
https://doi.org/10.1307/mmj/1028999131
https://doi.org/10.1090/S0002-9947-1959-0108459-5
https://doi.org/10.1090/S0002-9947-1959-0108459-5
https://doi.org/10.1007/BF01190416
https://doi.org/10.1007/BF01225472

D. A. Bredikhin. On semigroups of relations with the operation of the rectangular product 4@

9. Boner P., Poschel F. R. Clones of operations on binary relations. Contributions to General Algebra,
1991, vol. 7, pp. 50-70.

10. Bredikhin D. A. On quasi-identities of relation algebras with diophantine operations. Siberian
Mathematical Journal, 1997, vol. 38, pp. 23-33. https://doi.org/10.1007/BF02674896

11.  Bredikhin D. A. On groupoids of relations with one conjunctive operation of rank 2. Studia Logica,
2022, vol. 110, pp. 1137-1153. https://doi.org/10.1007/s11225-022-09993-2

12.  Schein B. M. Semigroups of rectangular binary relations. Soviet Mathematics. Doklady, 1965,
vol. 6, iss. 6, pp. 1563-1566.

[Mocrymuna B pepakuuio / Received 09.03.2023
[Mpunsita k nmy6aukauuu / Accepted 26.04.2023
Ony6arkosana / Published 30.08.2024

Martemarvka 329


https://doi.org/10.1007/BF02674896
https://doi.org/10.1007/s11225-022-09993-2

	Main results
	Proofs of results
	Структуры доступа на основе линейных кодов
	Структура доступа, связанная с разбиением множества участников
	Построение линейных кодов на основе некоторых структур доступа
	Тела коэффициентов класса 0
	Третье тело коэффициентов класса 0
	Обобщенная смешанная задача и ее формальное решение
	Преобразование формального решения
	Решение обобщенной смешанной задачи (1)–(3)
	Материалы и методы
	Апробация методологии
	Постановка прямой задачи
	Анализ чувствительности
	Постановка задачи
	Уравнения гиперболического погранслоя в окрестности фронта волны сдвига
	Математическая модель
	Динамика системы
	Управление углом наклона платформы, вращающейся с периодической угловой скоростью
	Постановка задачи
	Метод перенормировки
	Уровень оксигенации
	Артериальное давление
	Общая идея метода
	Выделение признаков с применением интегральных преобразований
	Обзор релевантных исследований
	Предлагаемое решение
	Related works
	Rank distributions and recognition of anomalous network states
	Analysis of the obtained results
	Гиперзвуковые течения газа и механика жидкости
	Механика космического полета (астродинамика), теория оптимального управления и теория БИНС





























