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Аннотация. Предложен численный алгоритм решения дифференциальных уравнений в полных диф-
ференциалах, основанный как на эффективном вычислении интегрирующих множителей, так и на
«новом» численном методе интегрирования функций. Устойчивое определение интегрирующих мно-
жителей обеспечивается за счет использования чебышевской интерполяции искомых функций и
проведения расчетов на сетках Гаусса –Лобатто, обеспечивающих дискретную ортогональность че-
бышевских матриц. После чего процедура интегрирования осуществляется с помощью чебышевских
матриц интегрирования. Интегрирующий множитель и итоговый потенциал решения обыкновенного
дифференциального уравнения представляются в виде интерполяционных полиномов, зависящих от
ограниченного количества численно восстанавливаемых коэффициентов разложения.
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Introduction

On the way of generalizing the pseudospectral method of Chebyshev collocations for solving
linear ODEs to the class of nonlinear ODEs, we dwell on an intermediate subclass of special
linear differential equations with two independent variables — exact differential equations [1].

The problem of numerical integration of ODEs is traditionally studied within the framework
of solving the Cauchy problem. The most common Runge –Kutta method is related to all other
methods included in the conventional libraries. Finite-difference methods for solving differential
equations and finite element methods reduce the original continuous problem to a discrete
analog, a system of algebraic equations. For linear differential equations (DE), this is a system of
linear algebraic equations (SLAE). Both approaches in their traditional implementations require
significant amounts of memory and/or substantial time costs.

An alternative to the latter approaches, which can be considered finite-dimensional approxima-
tions of the desired solutions and coefficients of equations from infinite-dimensional function
spaces, is a truncated expansion in complete systems of orthogonal polynomials. For them,
three-term relations are performed, which make it possible to drastically reduce the number of
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intermediate calculations. Another resource is the availability of special “orthogonal” discrete
grids consisting of the roots of the corresponding polynomials. An example is the Gauss – Lobatto
grid for Chebyshev polynomials. Ultimately, these factors reduce the required memory and
computation time by orders of magnitude.

The method of integrating factors is a representation of the solution in the form of a product
of functions, a kind of method of separation of variables. Representing a solution as a product
of two or more functions, compared to methods for finding a single desired function, provides
much more opportunities and more variety to obtain the desired solution. The approach to the
numerical solution of ODEs based on integrating factors offers new possibilities compared to
simple traditional methods.

In analytical form, the method of integrating factors for constructing solutions of both linear
and nonlinear differential equations has been used for a long time [2]. We propose an efficient
numerical approach based on the collocation method and the use of integrating factors. A robust
algorithm for the search for solution is implemented in the spectral space, and for the polynomial
interpolation of the solution, expansion into a series of Chebyshev polynomials of the first kind is
used.

1. Motivation

The class of exact differential equations or total differential equations is a kind of ordinary
differential equations that are widely used in physics and technology (see, e.g., papers by
L. L. Doskolovich [3–6] about inverse problems of calculating optical elements). In Refs. [7,8],
the inverse problem of designing a reflective surface of arbitrary shape to create a given
illumination distribution is reduced to the form of the Monge –Ampère problem. Prior to that, in
the papers by Doskolovich et al. [9,10], this problem was solved in the presence of the surface
axial symmetry and for one-dimensional illumination distributions.

In Ref. [11], a new method for reconstructing a reflecting (refracting) surface from a given
source–target map is proposed, which determines the relationship between the directions of
incident and reflected (refracted) rays. In the proposed method, the optical surface is represented
as an envelope of multiple paraboloids (reflecting surface) or ellipsoids (refractive surface). This
representation makes it possible to reduce the problem of designing an optical surface to restoring
a function from its total differential. The proposed approach is illustrated by the synthesis of
mirrors that produce uniform illumination on a square target in the far-field zone. The results
of the calculations showed that the proposed method allows forming qualitative illumination
distributions even if the integrability condition is not met.

Reference [12] proposes a method for designing reflective surfaces that form given continuous
illumination distributions in two-dimensional regions. The surface of the mirror is represented as
an envelope of a two-parameter family of ellipsoids. The first focus of each ellipsoid coincides
with the point light source, and the second is in the illuminated area. This surface representation
can be interpreted as an extreme case of a segmented surface used in the support quadric method
to focus on a set of points. The envelope equation depends on the function that determines the
lengths of the major axes of the ellipsoids of the family. The calculation of this function is carried
out using a continuous approximation of the discrete function obtained from the solution of the
discrete problem of focusing on a set of points. The high efficiency of the proposed method is
illustrated by the developed examples of mirrors for creating a uniform distribution of illumination
in areas of various shapes.

Based on the results of Refs. [11, 12], we developed a method for restoring a reflective
(refractive) surface from a given source-screen mapping. This representation makes it possible to
reduce the problem of designing an optical surface to the problem of restoring a function from
its total differential. In this case, reduction to a total differential can be carried out using an
integrating factor.
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2. Basic solution method

As the main construction in developing a method for solving the nonlinear ODEs considered
below, we will use a stable and efficient algorithm for restoring a function from a known
derivative (practically this is the equivalent of the problem of restoring the antiderivative from
the integrand) — the solution of the Cauchy problem for an ordinary differential equation [13,14]

𝑦′(𝑥) = 𝑓(𝑥), 𝑦 (𝑥0) = 𝑦0, 𝑥 ∈ [𝑎, 𝑏].

The method consists in representing the approximate solution of the problem in the form of a
series 𝑦(𝑥) =

∑︀𝑛
𝑘=0 𝑐𝑘𝑇𝑘(𝑥) of Chebyshev polynomials of the first kind 𝑇𝑘(𝑥) with the domain of

definition 𝑥 ∈ [−1, 1]. The linear transformation 𝑙(𝑥) = (2𝑥−(𝑏+𝑎))
(𝑏−𝑎) allows to proceed to solving

the problem in the interval [−1, 1], the upper estimate of the interpolation error [15] having the
form:

|𝑦(𝑥)−
𝑛∑︁

𝑘=0

𝑐𝑘𝑇𝑘(𝑥)| <=
1

2𝑛(𝑛+ 1)!
|(𝑏− 𝑎)

2
|𝑛+1 max

𝜉∈[𝑎,𝑏]
|𝑦(𝑛+1)(𝜉)|.

Thus, the Chebyshev interpolation is an almost optimal approximation in the sense of the
norm 𝐿∞ nearly equivalent to the 𝐿2 norm. Moreover, the use of Gauss –Lobatto nodes as
interpolation nodes leads to optimal integration formulas.

Below we consider both the interpolation problem and the problem of solving ODE exactly in
the interval [−1, 1].

𝑦′(𝑥) = 𝑓(𝑥), 𝑦 (𝑥0) = 𝑦0, 𝑥 ∈ [−1, 1]. (1)

We propose to find the expansion coefficients 𝑐𝑘, 𝑘 = 0, . . . , 𝑛 of the approximate solution (1)
in the form of the series 𝑦(𝑥) =

∑︀𝑛
𝑘=0 𝑐𝑘𝑇𝑘(𝑥) of Chebyshev polynomials in two stages.

At the first stage, the stage of derivative interpolation, the collocation method is used to
calculate the coefficients 𝑏𝑘, 𝑘 = 0, . . . , 𝑛 of the derivative expansion 𝑓(𝑥𝑗) =

∑︀𝑛
𝑘=0 𝑏𝑘𝑇𝑘(𝑥𝑗),

𝑗 = 0, . . . , 𝑛 in the orthogonal basis of the Chebyshev polynomials of the first kind.
The algorithm stability is achieved at the expense of the discrete orthogonality of the modified

Chebyshev matrix T = [𝑇𝑗,𝑘]06𝑗,𝑘6𝑛 on the Gauss – Lobatto grid. The choice of collocation points
𝑥𝑗 = cos(𝜋𝑗/𝑛), 𝑗 = 0, . . . , 𝑛, makes it possible by multiplying the first and the last equation of
the collocation method by 1/

√
2 to obtain an equivalent “modified” system with a new matrix T̃

instead of T and vector f̃ instead of f. The new system already possesses the property of discrete

“orthogonality”. Its multiplication from the left by the transposed matrix T̃
T

yields a system with
the diagonal matrix ⎡⎢⎢⎢⎢⎢⎣

𝑛 0 0 . . . 0
0 𝑛

2 0 . . . 0
0 0 𝑛

2 . . . 0

. . . . . . . . .
. . . . . .

0 0 0 . . . 𝑛

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑏0
𝑏1
𝑏2
. . .
𝑏𝑛

⎤⎥⎥⎥⎥⎦ = T̃
T

⎡⎢⎢⎢⎢⎣
𝑓0
𝑓1
𝑓2
. . .

𝑓𝑛

⎤⎥⎥⎥⎥⎦
where f = T̃

T (︀
𝑓0/

√
2, 𝑓1, . . . , 𝑓𝑛−1, 𝑓𝑛/

√
2
)︀T

The expansion coefficients for the function 𝑓(𝑥) are easily expressed in the explicit form

𝑏0 =
𝑓0
𝑛
, 𝑏1 =

2𝑓1
𝑛
, 𝑏2 =

2𝑓2
𝑛
, . . . , 𝑏𝑛 =

𝑓𝑛
𝑛
.

The second stage implies the calculation of the antiderivative expansion coefficients 𝑐𝑘,
𝑘 = 1, . . . , 𝑛. For this purpose, we multiply the banded three-diagonal integration matrix [13,
16, 17] by the vector of the derivative expansion coefficients 𝑏𝑘, 𝑘 = 0, . . . , 𝑛 and obtain the
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expansion coefficients 𝑐𝑘, 𝑘 = 1, . . . , 𝑛 of the antiderivative, except the zeroth one, 𝑐0:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
1 0 −1

2 0 0 0 0
0 1

4 0 −1
4 0 0 0

0 0 1
6 0 0 0 0

. . . . . . . . . . . . . . . . . . 0

0 0 0
. . . 1/2

(𝑛−1) 0 −1/2
(𝑛−1)

0 0 0
. . . 0 1

2𝑛 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏0
𝑏1
𝑏2
𝑏3
𝑏4
...

𝑏𝑛−1

𝑏𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐0 =?
𝑐1
𝑐2
𝑐3
𝑐4
...

𝑐𝑛−1

𝑐𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In some cases, e.g., when solving the Cauchy problem with a given initial condition 𝑦0,
it is also necessary to know the zero coefficient 𝑐0. Then a linear equation that specifies the
initial/boundary condition is additionally solved, and the coefficient 𝑐0 is calculated by the formula
𝑐0 = 𝑦0 −

∑︀𝑛
𝑘=1 𝑐𝑘(−1)𝑘.

The approach presented has been successfully applied by the authors to solve linear ODEs of
the first and second order [13,14].

The third stage is the ultimate calculation of the potential surface values, which requires
efficient computation of definite integrals of the functions, interpolation coefficients of which
are already known. We will present a formula for calculating definite integrals from the known
coefficients of Chebyshev interpolation, which directly follows from the recurrence relation for
the Chebyshev polynomials of the first kind.

Assertion. Let the coefficients 𝑏𝑘, 𝑘 = 0, . . . , 𝑛 be the coefficient of expansion of the integrand
𝑓(𝑥) =

∑︀𝑛
𝑘=0 𝑏𝑘𝑇𝑘(𝑥), 𝑗 = 0, . . . , 𝑛 in Chebyshev polynomials. Then the exact formula for

calculating a definite integral by the interpolation coefficient of function 𝑓(𝑥) expansion in the
interval [−1, 1] has the form:∫︁ 1

−1
𝑓(𝑥)𝑑𝑥 ≈

∫︁ 1

−1

𝑛∑︁
𝑘=0

𝑐𝑘𝑇𝑘(𝑥)𝑑𝑥 = 2

𝑛∑︁
𝑘=0, 𝑘=𝑒𝑣𝑒𝑛

𝑐𝑘
1− 𝑘2

.

On the way to generalizing the pseudospectral method of Chebyshev collocations from linear
ODEs to the class of nonlinear ODEs, we dwell on an intermediate subclass of special linear
differential equations with two independent variables.

3. Equations with separable variables

Consider the solution of one of the simplest nonlinear equations of the first order — an equation
with separable variables.

Nonlinear first-order general equation

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦)

can be written in the form

𝑀(𝑥, 𝑦) +𝑁(𝑥, 𝑦)
𝑑𝑦

𝑑𝑥
= 0.

A transformation to such form is always possible. In the particular case when 𝑀(𝑥, 𝑦) depends
only on 𝑥, and 𝑁(𝑥, 𝑦) depends only on 𝑦, the equation is reduced to the form

𝑀(𝑥) +𝑁(𝑦)
𝑑𝑦

𝑑𝑥
= 0 (2)

of an equation with separable variables. It is possible to use the symmetry in the form of the
equation and emphasize the ‘independence’ of the dependent variables from the independent ones:

𝑀(𝑥)𝑑𝑥+𝑁(𝑦)𝑑𝑦 = 0. (3)
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The solution (a general integral) of this equation with separable variables in an implicit form
is obtained by integrating Eq. (3):∫︁

𝑀(𝑥)𝑑𝑥+

∫︁
𝑁(𝑦)𝑑𝑦 = 𝐶, (4)

where 𝐶 is an arbitrary constant. Any differentiable function 𝑦 = 𝜙(𝑥), satisfying condition (4)
is a solution of Eq. (2). Thus, it implicitly defines the solution of the differential equation with
separable variables.

This form of the solution of the separable equation (with separable variables) can be
substantiated in the following way. We denote by 𝐻1 and 𝐻2 the functions, the derivatives
of which are 𝑀 and 𝑁 respectively, i.e.,

𝐻 ′
1(𝑥) =𝑀(𝑥), 𝐻 ′

2(𝑦) = 𝑁(𝑦),

then Eq. (2) can be rewritten as

𝐻 ′
1(𝑥) +𝐻 ′

2(𝑦)
𝑑𝑦

𝑑𝑥
= 0. (5)

According to the rule of differentiating a composite function, a chain of equalities is valid

𝐻 ′
2(𝑦)

𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑦
𝐻2(𝑦)

𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
𝐻2(𝑦)

and, therefore, Eq. (5) can be presented as

𝑑

𝑑𝑥
[𝐻1(𝑥) +𝐻2(𝑦)] = 0. (6)

Integrating the latter, we get the general solution

𝐻1(𝑥) +𝐻2(𝑦) = 𝑐, (7)

where 𝑐 is an arbitrary constant. Any differentiable function 𝑦 = 𝜙(𝑥), satisfying condition (6) is
a solution to Eq. (2) with separable variables in the implicit form.

Differential equation (2) together with the initial condition

𝑦(𝑥0) = 𝑦0 (8)

defines a Cauchy problem. The solution of such an initial-value problem implies the specification
of a certain numerical value of the parameter 𝑐 in Eq. (7). It is possible to specify such a value
by substituting in Eq. (7) the values 𝑥 = 𝑥0 and 𝑦 = 𝑦0 and computing the desired value of the
constant

𝑐 = 𝐻1(𝑥0) +𝐻2(𝑦0).

Substituting the calculated value of the constant 𝑐 in (7) and keeping in mind that

𝐻1(𝑥)−𝐻1(𝑥0) =

∫︁ 𝑥

𝑥0

𝑀(𝑠) 𝑑𝑠, 𝐻2(𝑦)−𝐻2(𝑦0) =

∫︁ 𝑦

𝑦0

𝑁(𝑠) 𝑑𝑠,

we obtain a formula to determine the particular integral curve of Eq. (2), passing through the
given point.

The solution of the Cauchy problem satisfying the initial condition 𝑦(𝑥0) = 𝑦0 is determined
by the relation ∫︁ 𝑥

𝑥0

𝑀(𝜉)𝑑𝜉 +

∫︁ 𝑦

𝑦0

𝑁(𝜂)𝑑𝜂 = 0, (9)

that determines the integral curve passing through the point (𝑥0, 𝑦0).
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Equation (9) implicitly determines the solution of differential equation (2), satisfying initial
condition (8). It should be kept in mind that in order to find an explicit formula that describes the
behavior of the integral curve, it is necessary to express the dependent variable 𝑦 as a function
of 𝑥 from the nonlinear equation (9). Unfortunately, it is often impossible to do analytically; in
such cases it is possible to use numerical methods to find approximate values of 𝑦(𝑥).

The algorithm of definite integral calculation based on Chebyshev interpolation:
∙ by linear transformation 𝑙(𝑥) = 2𝑥−(𝑏+𝑎)

𝑏−𝑎 reduce the integral calculation to the interval
[−1, 1];

∙ calculate the coefficients 𝑏𝑘, 𝑘 = 0, . . . , 𝑛 of the integrand expansion 𝑓(𝑥) =
∑︀𝑛

𝑘=0 𝑏𝑘𝑇𝑘(𝑥),
𝑗 = 0, . . . , 𝑛 in Chebyshev polynomials;

∙ calculate the values of the potential function at the point (𝑥, 𝑦) under the given initial
condition 𝑦(𝑥0) = 𝑦0:

𝐹 (𝑥, 𝑦) =

∫︁ 𝑥

𝑥0

𝑀 𝑑𝜉 +

∫︁ 𝑦

𝑦0

𝑁(𝜂) 𝑑𝜂

using the exact formula for calculating a definite integral from the interpolation coefficients
of the expansion of the integrand 𝑓(𝑥):∫︁ 1

−1
𝑓(𝑥) 𝑑𝑥 ≈

∫︁ 1

−1

𝑛∑︁
𝑘=0

𝑐𝑘𝑇𝑘(𝑥) 𝑑𝑥 = 2
𝑛∑︁

𝑘=0, 𝑘=𝑒𝑣𝑒𝑛

𝑐𝑘
1− 𝑘2

.

4. Numerical solution of an exact differential equation

Consider a simply connected open subset 𝐷 of 𝑅2 and two functions 𝑀 and 𝑁 , continuous in
𝐷. An implicit ordinary differential equation of the first order

𝑀(𝑥, 𝑦) 𝑑𝑥+𝑁(𝑥, 𝑦) 𝑑𝑦 = 0 (10)

is called an exact differential equation (a total differential equation), if there exists a continuously
differentiable function 𝐹 (𝑥, 𝑦), called a potential function, such that

𝑑𝐹 (𝑥, 𝑦)

𝑑𝑥
=𝑀(𝑥, 𝑦),

𝑑𝐹 (𝑥, 𝑦)

𝑑𝑦
= 𝑁(𝑥, 𝑦).

The integration of such an equation reduces to constructing the function 𝐹 (𝑥, 𝑦), after which
the solution is found in the form 𝐹 (𝑥, 𝑦) = 𝐶, since 𝑑𝐹 = 0. Thus, to solve the problem it
is necessary to calculate the values of the integral curve, which is a line of intersection of the
potential surface with a horizontal plane.

Let the function 𝐹 (𝑥, 𝑦) be a total differential of an exact DE defined on a certain simply
connected and open subset 𝐷 of 𝑅2. Then the differentiable function 𝑓(𝑥) such that (𝑥, 𝑓(𝑥)) ∈ 𝐷
is a solution if and only if there exists a real number 𝑐, such that

𝐹 (𝑥, 𝑓(𝑥)) = 𝑐.

In the case when the solution is subject to the requirement of passing through a given point
(a problem with an initial or boundary condition),

𝑦 (𝑥0) = 𝑦0,

the local value of the potential function can be calculated by the formula [18, Lesson 23]:

𝐹 (𝑥, 𝑦) =

∫︁ 𝑥

𝑥0

𝑀(𝑡, 𝑦0) 𝑑𝑡+

∫︁ 𝑦

𝑦0

𝑁(𝑥, 𝑡) 𝑑𝑡 =

=

∫︁ 𝑥

𝑥0

𝑀(𝑡, 𝑦0) 𝑑𝑡+

∫︁ 𝑦

𝑦0

[︂
𝑁(𝑥0, 𝑡) +

∫︁ 𝑥

𝑥0

𝜕𝑀

𝜕𝑡
(𝑢, 𝑡) 𝑑𝑢

]︂
𝑑𝑡. (11)

Solving the implicit equation 𝐹 (𝑥, 𝑦) = 𝑐 with respect to 𝑦, where 𝑐 is a given constant,
allows us to calculate all possible solutions (Fig. 1).
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Fig. 1. The potential 𝐹 (𝑥, 𝑦) =
(︀
𝑥2 + 𝑦2

)︀
/2

of the exact DE 𝑥 𝑑𝑥 + 𝑦 𝑑𝑦 = 0 restored
by the formula (11) (color online)

5. Integrating factors

The method of integrating factors allows a generalization of the proposed construction to a
wider class of nonlinear first-order ODEs reducible to the total differential form.

Three cases of equations admitting exact solutions are known:
∙ based on trivial integrating factors: 𝜇 ≡ 1;
∙ with an integrating factor depending only on 𝑥: 𝜇(𝑥);
∙ with an integrating factor depending only on 𝑦: 𝜇(𝑦).
In all three cases considered, the search for particular solutions is based on the pseudospectral

Chebyshev collocation method. The integrating factor method for implementing the algorithm
of numerical solution of linear ODEs by means of integration matrices [13] allows reducing the
problem to twofold sequential multiplication of a two-diagonal integration matrix by the vector of
spectral coefficients of the derivative. The lacking constants of integration are determined from
either boundary, or initial conditions of the problem. In the second and third case, a nontrivial
problem of finding the integration factors numerically additionally arises.

Case 1

If the left–hand side of the differential equation (10) is a total differential, i.e.,

𝑀𝑦(𝑥, 𝑦)−𝑁𝑥(𝑥, 𝑦) = 0,

then both its terms are calculated separately by means of the appropriate integration matrices.
If the differential equation (10) is not exact, but still has a solution, then a function 𝜇(𝑥, 𝑦)

necessarily exists, such that the equivalent equation obtained by multiplying both sides of Eq. (10)
by 𝜇(𝑥, 𝑦)

(𝜇𝑀) 𝑑𝑥+ (𝜇𝑁) 𝑑𝑦 = 0

is exact. Such function 𝜇(𝑥, 𝑦) is called an integrating factor of the initial equation. Experience
shows finding an integrating factor in the most general form is extremely difficult. Below we
consider two special particular cases.

Case 2

If 𝑀𝑦(𝑥, 𝑦)−𝑁𝑥(𝑥, 𝑦) ̸= 0, and (𝑀𝑦−𝑁𝑥)
𝑁 is a function only of 𝑥, let us denote it by 𝜉(𝑥). Then

𝜇(𝑥) = ± exp

(︂∫︁
𝜉(𝑥) 𝑑𝑥

)︂
is an integrating factor of this differential equation.
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Case 3

If 𝑀𝑦(𝑥, 𝑦)−𝑁𝑥(𝑥, 𝑦) ̸= 0, and (𝑀𝑦−𝑁𝑥)
(−𝑀) is a function only of 𝑦, let us denote it by 𝜓(𝑦). Then

𝜇(𝑦) = ± exp

(︂∫︁
𝜓(𝑦) 𝑑𝑦

)︂
is an integrating factor of this differential equation.

A more general situation, when none of these cases takes place, is not considered here.

6. Discussion, numerical examples

Let us consider examples of the three cases listed in the previous section.

Example 1. The case of total differential

Consider a numerical method for constructing a general integral (potential) of an implicit
exact differential equation:

(sin(𝑥𝑦)𝑥𝑦 cos𝑥𝑦) 𝑑𝑥+ 𝑥2 cos𝑥𝑦 𝑑𝑦 = 0. (12)

Equation (12) is an exact equation if and only if the condition

𝑑𝑀(𝑥, 𝑦)

𝑑𝑦
≡ 𝑑𝑁(𝑥, 𝑦)

𝑑𝑥
(13)

is valid in some simply connected domain 𝑅 of variation of variables.
If allowed by the problem statement, we analytically check the fulfillment of the condition

(13):

𝑑𝑀(𝑥, 𝑦)

𝑑𝑦
=

𝑑

𝑑𝑦
(sin(𝑥𝑦)𝑥𝑦 cos𝑥𝑦) = 2𝑥 cos𝑥𝑦 − 𝑥2𝑦 sin𝑥𝑦,

𝑑(𝑥, 𝑦)

𝑑𝑥
=

𝑑

𝑑𝑥

(︀
𝑥2 cos𝑥𝑦

)︀
= 2𝑥 cos𝑥𝑦 − 𝑥2𝑦 sin𝑥𝑦.

For Eq. (12), the necessary and sufficient condition is satisfied, and it is an exact differential
equation.

In the case when checking the condition (13) analytically is not possible, it may well be
sufficient to check this condition numerically. The feasibility of the necessary and sufficient
conditions can be checked on a fine enough grid in the domain 𝑅 with respect to the variables
(𝑥, 𝑦) ∈ 𝑅 by numerical pointwise comparison of the computed derivatives. When approximating
functions with series expansion in Chebyshev polynomials of the first kind, such a comparison
can be efficiently carried out using Gauss –Lobatto grids in both variables and Chebyshev
differentiation matrices in the spectral space.

Next we substitute specific expressions 𝑀(𝑥, 𝑦) = sin(𝑥𝑦)𝑥𝑦 cos𝑥𝑦 and 𝑁(𝑥, 𝑦) = 𝑥2 cos𝑥𝑦
into Eq. (11) to calculate the potential at the initial value, 𝑦(0) = 0, 𝑥0 = 0, 𝑦0 = 0. In the vicinity
of the initial point, the potential values are calculated using the formula

𝐹 (𝑥, 𝑦) =

∫︁ 𝑥

𝑥0

(sin (𝑡𝑦0) 𝑡𝑦0 cos 𝑡𝑦0) 𝑑𝑡+

+

∫︁ 𝑦

𝑦0

[︂
𝑥0

2 cos𝑥0𝑡+

∫︁ 𝑥

𝑥0

{︂
2𝑢 cos𝑢𝑡− 𝑢2𝑡 sin𝑢𝑡

𝜕𝑀

𝜕𝑡
(𝑢, 𝑡)

}︂
𝑑𝑢

]︂
𝑑𝑡.

Numerically, the integrals in this equation are calculated based on the method of restoring
the antiderivative from the known integrand. Plots of the calculated potential and its errors are
shown in Fig. 2.

The exact solution, the potential function of Eq. (12) looks as follows:

𝑥 sin(𝑥𝑦) = 𝑐.
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a b

Fig. 2. The calculated potential surface and the error of its calculation: a — potential surface, the interval
from −1.5 to +1.5 is shown; b — deviation from the exact surface (𝐹 (𝑥, 𝑦)− 𝑥 sin(𝑥𝑦)) · 1012 (color online)

Example 2

The case of reduction to the form of a total differential using the integrating factor 𝜇(𝑥) [17,
Sample 2.6.1].

Consider the equation(︀
2𝑥𝑦3 − 2𝑥3𝑦3 − 4𝑥𝑦2 + 2𝑥

)︀
𝑑𝑥+ (3𝑥2𝑦2 + 4𝑦) 𝑑𝑦 = 0. (14)

We will search the solution by choosing an appropriate integrating factor.
Passing to the standard notation in Eq. (14):

𝑀 = 2𝑥𝑦3 − 2𝑥3𝑦3 − 4𝑥𝑦2 + 2𝑥,

𝑁 = 3𝑥2𝑦2 + 4𝑦

we write the difference of derivatives in the form

𝑀𝑦 −𝑁𝑥 = 6𝑥𝑦2 − 6𝑥3𝑦2 − 8𝑥𝑦 − 6𝑥𝑦2 = −6𝑥3𝑦2 − 8𝑥𝑦. (15)

Since the right-hand side of Eq. (15) is nonzero, Eq. (14) is not exact. However, the expression

𝑀𝑦 −𝑁𝑥

𝑁
= −6𝑥3𝑦2 + 8𝑥𝑦

3𝑥2𝑦2 + 4𝑦
= −2𝑥

is independent of 𝑦, therefore, the integrating factor can be calculated by the formula

𝜇(𝑥) = exp

(︂
−
∫︁

2𝑥 𝑑𝑥

)︂
and equals 𝜇(𝑥) = exp

(︀
−𝑥2

)︀
. The numerical determination of the integrating factor reduces, as

above, to the method of calculating the antiderivative of the integrand (𝑀𝑦 −𝑁𝑥) /𝑁 , followed by
the calculation of the exponential function in necessary points of the desired range. Multiplying
Eq. (14) by 𝜇(𝑥), we proceed to the solution of the equivalent exact equation

𝑒−𝑥2 (︀
2𝑥𝑦3 − 2𝑥3𝑦3 − 4𝑥𝑦2 + 2𝑥

)︀
𝑑𝑥+ 𝑒−𝑥2 (︀

3𝑥2𝑦2 + 4𝑦
)︀
𝑑𝑦 = 0.

To solve this equation, it is necessary to construct a function (potential) 𝐹 (𝑥, 𝑦), such that

𝐹𝑥(𝑥, 𝑦) = 𝑒−𝑥2
(2𝑥𝑦3 − 2𝑥3𝑦3 − 4𝑥𝑦2 + 2𝑥), (16)
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𝐹𝑦(𝑥, 𝑦) = 𝑒−𝑥2 (︀
3𝑥2𝑦2 + 4𝑦

)︀
. (17)

Substituting into the formula (11) expressions (16), (17), and the mixed derivative

𝐹𝑥𝑦(𝑥, 𝑦) = 𝑒−𝑥2 (︀
6𝑥𝑦2 − 6𝑥3𝑦2 − 8𝑥𝑦

)︀
,

for each desired point (𝑥, 𝑦) ∈ 𝑅 of the domain of solution existence at the given initial condition
𝑦(0) = 0, 𝑥0 = 0, 𝑦0 =

√︀
1/2, we build the approximating potential surface (18) (Fig. 3).

The exact solution has the form

𝐹 (𝑥, 𝑦) = 𝑒−𝑥2 (︀
𝑦2
(︀
𝑥2𝑦 + 2

)︀
− 1
)︀
. (18)

a b

Fig. 3. The calculated potential surface and the error of its calculation: a — potential surface, the interval

from −1.0 to +1.5 is shown; b — deviation from the exact solution
(︁
𝐹 (𝑥, 𝑦)− 𝑒−𝑥2 (︀

𝑦2
(︀
𝑥2𝑦 + 2

)︀
− 1
)︀)︁

·108

(color online)

Example 3

The case of reducing the initial equation to the total differential form using an integrating
factor 𝜇(𝑦) [17, Sample 2.6.2]:

2𝑥𝑦3 𝑑𝑥+ (3𝑥2𝑦2 + 𝑥2𝑦3 + 1) 𝑑𝑦 = 0. (19)

Let us introduce the standard notation in Eq. (19)

𝑀 = 2𝑥𝑦3, 𝑁 = 3𝑥2𝑦2 + 𝑥2𝑦3 + 1,

then the criterion of the equation belonging to exact differential equations has the form

𝑀𝑦 −𝑁𝑥 = 6𝑥2 −
(︀
6𝑥𝑦2 + 2𝑥𝑦3

)︀
= −2𝑥𝑦3. (20)

Since the right-hand side of Eq. (20) is nonzero, Eq. (19) is not exact. However, the expression

𝑀𝑦 −𝑁𝑥

𝑁
= − 2𝑥𝑦3

3𝑥2𝑦2 + 𝑥2𝑦3 + 1

depends on both 𝑥 and 𝑦, therefore, it turns out impossible to calculate the integrating factor in
the form 𝜇(𝑥).
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Let us try another possibility of constructing the integrating factor — as a function of the
second variable:

𝑁𝑥 −𝑀𝑦

𝑀
= −2𝑥𝑦3

2𝑥𝑦3
= 1.

Since the relation (13) is independent of 𝑥, the integrating factor 𝜇(𝑦) exists and is written
as 𝜇(𝑦) = exp(𝑦). The numerical determination of the integrating factor reduces, as above, to the
method of computing the antiderivative from the integrand with subsequent calculation of the
exponential function at the necessary points of the desired range. Multiplying Eq. (19) by 𝜇(𝑦),
we proceed to the solution of the obtained exact differential equation

2𝑥𝑦3𝑒𝑦 𝑑𝑥+ (3𝑥2𝑦2 + 𝑥2𝑦3 + 1)𝑒𝑦 𝑑𝑦 = 0.

To solve this equation, it is necessary to construct the function (potential) 𝐹 (𝑥, 𝑦), such that

𝐹𝑥(𝑥, 𝑦) = 2𝑥𝑦3𝑒𝑦, (21)

𝐹𝑦(𝑥, 𝑦) = (3𝑥2𝑦2 + 𝑥2𝑦3 + 1)𝑒𝑦. (22)

Substituting into formula (11) expressions (21), (22), and the expression of the mixed
derivative

𝐹𝑥𝑦(𝑥, 𝑦) =
(︀
6𝑥𝑦2 + 2𝑥𝑦3

)︀
𝑒𝑦 = 2𝑥𝑦2(1 + 𝑦)𝑒𝑦

for each desired point (𝑥, 𝑦) ∈ 𝑅 from the domain of solution existence under the given initial
condition 𝑦(0) = 0, 𝑥0 = 0, 𝑦0 = 0, we construct the approximating surface of the potential (23)
(Fig. 4).

The exact solution has the form

𝐹 (𝑥, 𝑦) =
(︀
𝑥2𝑦3 + 1

)︀
𝑒𝑦. (23)

a b

Fig. 4. The calculated potential surface an the error of its calculation: a — potential surface, the interval from
−1.0 to +1.0 is shown; b — deviation from the exact surface

(︀
𝐹 (𝑥, 𝑦)−

(︀
𝑥2𝑦3 + 1

)︀
𝑒𝑦
)︀
· 1011 (color online)
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Conclusion

The approximation of functions by the Chebyshev polynomials is optimal in 𝐿∞ metric and
near-optimal in 𝐿2-norm metric [19]. Using the collocation method to calculate the coefficients
of expansion in Chebyshev polynomials makes it possible to obtain a high approximation accuracy
with a small number of terms in the series. The use of three-term relations provides high speed
and accuracy of calculation of Chebyshev polynomials at arbitrary points of the solution definition
interval.

Due to the discrete orthogonality of Chebyshev matrices, the Chebyshev collocation method
on Gauss –Lobatto grids practically reduces the calculation of interpolation coefficients to
multiplying the matrix by the vector of values of the interpolated function. The use of integration
and differentiation matrices reduces nonlinear operations (integration and differentiation) to
algebraic multiplication of sparse matrices by vectors. Numerical experiments demonstrate a
decrease in computational costs by orders of magnitude compared to traditional methods for
solving ODEs.

The method of integrating factors representing the solution as a product of functions is a
variant of the method of separation of variables. This is a more interesting approach compared
to presenting the solution as an expansion of the desired function 𝑓(𝑥) into a series and finding
expansion coefficients by the method of least squares in one form or another (Bubnov –Petrov –
Galerkin), since the product is a more complex construction, which offers more diverse possibilities
when searching for the desired solution.

The approach to the numerical solution of ODEs based on integrating factors adds new
possibilities compared to simple traditional Runge –Kutta methods. The speed and accuracy of the
solution procedure sharply increases due to the use of a global approximation of the solution over
the entire interval. The technique for solving first-order ODEs is simplified and generalized [13].
In many cases, the integrating factor method makes it possible to reduce ODEs with separable
variables to exact ODEs and restore the desired potential with high accuracy.
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