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Abstract. Asymptotic integration methods have been used to model the propagation of a shear wave beam
along a nonlinear-elastic cylindrical shell of the Sanders — Koiter model. The shell is assumed to be made of
a material characterized by a cubic dependence between stress and strain intensities, and the dimensionless
parameters of thinness and physical nonlinearity are considered to have the same order of smallness. The
multiscale expansion method is used, which makes it possible to determine the wave propagation speed
from the equations of the linear approximation, and in the first essentially nonlinear approximation, to
obtain a nonlinear quasi-hyperbolic equation for the main term of the expansion of the shear displacement
component. The derived equation is a cubically nonlinear modification of the Lin — Reisner — Tsien equation
modeling unsteady near-sonic gas flow and can be transformed into the modified Khokhlov - Zabolotskaya
equation used to describe narrow beams in acoustics. The solution of the derived equation is found in
the form of a single harmonic with slowly changing complex amplitude, since in deformable media with
cubic nonlinearity the effect of sell-induced wave essentially prevails over the effect of generation of higher
harmonics. As a result, a perturbed nonlinear Schrddinger equation of defocusing type is obtained for
the complex amplitude, for which there is no possibility of modulation instability development. In terms
of the elliptic Jacobi function, an exact physically consistent solution, periodic along the dimensionless
circumferential coordinate, is constructed.
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AHnHoTanya. MerogaMy aCHMIITOTHYECKOTO MHTEIPHPOBAHHUS MPOBENEHO MOJEJIHPOBAHUE PACIPOCTPaHEHHUS
My4yKa CABUTOBBIX BOJIH BJIOJIb 00pa3ylollell HeJMHEHHO-YIIPYrod UHIHHIPUYecKoH o6osouku mopean CaH-
nepca — Koiitepa. Cunraercs, 4To 060/04Ka U3rOTOBJAEHA U3 MaTepuasa, XapaKTepU3yIoLlerocs Kyouyeckou
3aBUCUMOCTbIO MEXIY MHTEHCUBHOCTSIMH HATNpsKeHUH U nedopMaluii, a 6e3pa3MepHble MapaMeTPhbl TOHKO-
CTEHHOCTH U (PU3HUECKOH HEeJHHEHHOCTH SIBJSIOTCS BeJHUYMHAMH OJHOTO MOpsiika MasocTd. Hcnosbsyercs
Pa3HOBHUAHOCTb METOAA MHOIOMAacLITaOHbIX Pa3/okKeHUH, M03BO/A0LIAs U3 YPaBHEHUH JIMHEHHOrO MPUOJIMIKe-
HHU$ OTIPeNEeUTb CKOPOCTb PACIIPOCTPAHEHHUS BOJIHBI, 2 B MIEPBOM CYILECTBEHHO HEJHHEHHOM NPUOJIHKEHUN —
NOJMYYUTh paspellaioliiee HeJMHEHHOe KBa3UTUIlepOoNHUecKoe ypaBHeHHUe JJISl [IaBHOI'O YJIeHa PasJiodKeHHs
CIIBUTOBOH KOMIIOHEHTH! CMellleHHsl. BriBeleHHOe ypaBHeHHe NpeACTaBseT cO00H KyOUUeCKH HeJNUHEHHYI0
Monudukauuo ypaBHeHus JInHs — PeficHepa — L[35Ha, Momeupyoliero HecTalHOHAPHOE OKOJIO3BYKOBOE
TeueHHe rasa, U MOxeT ObITb IIpeobpa3oBaHO B MOAM(HULUPOBAHHOE ypaBHeHHe 3a00/10TCcKOH — X0XJI0Ba,
UCIONb3yeMoe /1S ONMUCAHUS Y3KUX MYYKOB B aKyCTHKe. PellleHue BbIBEIeHHOI0 YpaBHEHHS OTbICKUBAeTCs B
BUJIe OJHOW TapMOHUKH C MeIJIeHHO MEHSIOIIEHCs KOMIJIEKCHOH aMIIUTYIOH, MOCKOJbKY B AehOpMUPYyEMbIX
cpefax ¢ KyOHUecKOH HeJMHEHHOCThIO 3((eKT caMOBO3AEHCTBUS BOJHBI CYIIECTBEHHO Mpeodnanaet Ham 3¢-
(beKTOM reHepallMM BBICILIMX FAPMOHHUK. B pesysbrare o/ KOMIJIEKCHOH aMIVIMTYIbl OJYUYeHO BO3MYLLEHHOE
HeslMHeliHOe ypaBHeHHue lllpennHrepa nedoKycHpyIOLIEro TUNA, A/ KOTOPOro OTCYTCTBYeT BO3MOXKHOCTD
Pa3BUTHS MOLYJNSLUOHHON HeyCTOHUMBOCTH. B TepMuHax aniunTuyeckod pyHKUMK K06 MOCTPOEHO TOUHOE
(hU3UYECKH COCTOSITeNbHOE pelleHHe, NepuoaudYecKoe Mo 6e3pa3MepHOl OKPYXKHOH KOOpAMHATe.
KuroueBble cjioBa: HellMHeHHO-yIpyras LUJAMHIPHYecKas 000/104Ka, CIBUTOBblE BOJHBI, aCUMITOTHYECKOE
UHTErpUpOBaHHUe, HeslMHelHoe ypaBHeHMe Illpenunrepa
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Introduction

Currently, there is an increasing interest in the study of nonlinear shear waves in systems of
various physical natures in relation to problems of acoustic diagnostics and non-destructive testing.
Biomedical applications of shear waves are discussed in [1,2]. The possibility of diagnosing
pathologies and the functional state of the muscular system is shown, due to the fact that the
speed of these waves in the muscles is much lower than the speed of longitudinal waves and
the formation of higher symmetry. Corresponding acoustic methods have great promise in the
diagnosis of neuralgic pathologies, as well as in gerontology, sports, and space medicine. In [3],
a method for measuring shear elasticity using focused ultrasound radiation pressure known as
SWEI (Shear Wave Elasticity Imaging) was proposed. The development of this technique called
supersonic shear imaging (SSI) is discussed in [4,5]. The results of observing a shear wave excited
by focused ultrasound in a rubber-like medium are given in [6]. A theoretical model has been
constructed that allows one to calculate the characteristics of the generated shear wave depending
on the parameters of the medium and the initial longitudinal wave. In [7], plane nonlinear shear
waves in a medium with memory are considered. Model equations with cubic nonlinearity are
derived and analyzed based on the Duffing equation. The dissertation [8] is devoted to the study of
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the propagation of linear and nonlinear shear waves in viscoelastic media. Classes of exact wave
solutions for shear waves in special viscous media were constructed in [9]. In [10], the effects of
cubic nonlinearity in shear wave beams of different polarizations are analyzed analytically and
numerically. Solitary and compact shear waves are studied in [11]. The possibility of generating
the second harmonic for shear waves in an elastoplastic medium was demonstrated in [12].
Nonlinear shear waves in a solid with a microstructure are studied in [13]. In [14], shear waves
in a nonlinear elastic body are analytically modeled. The propagation of a beam of shear waves
in a hereditary medium in the quasi-optical approximation is considered in [15]. In [16], the
propagation of shear solitons in an elastic plate is modeled. In [17-20], quasi-hyperbolic and
evolutionary equations that can be reduced to integrable ones are derived. Thus, the possibility
of generation and conditions for the existence of shear solitons are demonstrated. Nonlinear
longitudinal and shear stationary deformation waves in a gradient-elastic medium are considered
in [17]. It is shown that stationary shear waves are described by the Duffing equation. The
propagation of nonlinear shear waves in a granular medium is considered in [19]. It is shown that
low-frequency soliton-like disturbances are described by the Boussinesq equation. In [20], the
modeling of solitary shear waves in a granular medium led to the perturbed sine-Gordon equation
for the first time. It is shown that the speed of a solitary wave is always less than the speed of a
transverse seismic wave. In [21], the influence of material heterogeneity on the evolution of a
Riemann shear wave is studied. The dependence of the characteristic breaking distance of the
Riemann wave on the values of the corresponding elastic moduli has been revealed.

Problems of nonlinear wave dynamics of cylindrical shells, in contrast to similar problems
for rods and plates [22], have been studied to a lesser extent to date. The reason is that in rods
and plates, tangential and normal displacements are separated in a linear approximation and are
coupled only due to nonlinearity, which simplifies the use of asymptotic integration procedures [23]
of systems of initial equations. In shells, due to curvature, longitudinal, circumferential and
normal displacements are already connected in a linear approximation, and the division of
wave movements into longitudinal, shear (torsional), and bending becomes, to a certain extent,
conditional.

Depending on which component of the displacements predominates, we have to talk about
longitudinal-flexural, flexural-longitudinal, flexural-shear, etc. waves. Nonlinear axisymmetric
waves of the longitudinal-flexural type are considered in [24-27]. Flexural-longitudinal waves
are studied in [28]. In these works, classes of exact soliton-like and periodic solutions were
constructed and questions of their physical realizability were discussed. This article is devoted to
modeling the propagation of a predominantly shear wave along the generatrix of a cylindrical
shell.

1. Derivation of the resolving equation

We will carry out further analysis based on the Sanders —Koiter model of a cylindrical
shell [29,30]. Geometrically linear equations of motion of a shell element in forces and moments
have the form:

ON, ONg, 1 0M,, ~ho*u

Ox + Oy 2R Oy g o2 7
ONgy (ONy, 3 OMy, 10M, ~hd*v

_ B S |
Ox dy 2R Ox R oy g Ot2 0 M
0*M, 0*My, 0°M, 1 ~vh 0%w
7 T2 5 TRV e = U
oz 0xdy dy R g Ot

where z,y are longitudinal and circumferential coordinates, u,v,w are movement of the middle
surface of the shell element in the longitudinal, circumferential and radial directions, respectively,
N, M, are normal force and bending moment in a section perpendicular to the axis Ox, Ny, M,
are normal force and bending moment in a section perpendicular to the axis Oy, Ny, M, are
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shear force and torque in a plane section Oxy, h, R, are thickness, radius of curvature and
surface density of the shell, g is acceleration of gravity and ¢ is time.

We will assume that the shell is made of a nonlinear elastic material characterized by a cubic
relationship between the intensities of stress and strain [31]

g; = Eoé‘i — maf’,

where Ej is the initial elastic modulus and m is the material constant determined experi-
mentally [32].

The relationship between forces and moments with deformations and changes in curvature of
the middle surface is assumed to be as follows:

Eg—mez2 h
Nxz(l_lﬂ)(ex—i-uey),
Eo —me?) h
Ny:(1_u2)(ey+l‘€x)v (2)
(Eo —me?) h
Nzy:—ea:y7
2(1+p)
(Eo — me?) h? 2mFh?
M, = ~————2— (K + pky) — ex + pey) ,
PE gy (et 27(1-,&)(1—@2(“3 ey)
(EO — meZ) h3 2mFh3
M, =~~———"2 (K, + pky) — ey + pez), 3
y 12(1—u2) (y [k ) 27(1_M2)(1_M)2(y pez) (3)
u :(Eo—me?)hg'l—,u‘ﬂ B 2mFh? R
Y 12(1-p?) 2 Voot - (1—p)? 2
where A )
H 2
e = 9 <ex —emey+e§+ ( _M)Q(ex +ey)” + 3efcy>

represents the square of the intensity of deformations of the middle surface, u is Poisson’s ratio
and

1 3
F=(1-p+ ,uQ) (Kzer + Kyey) — B (1—4p+ ,u2) (Ky€z + Kzey) + meyexy(l — )%

The components of changes in curvature and deformation in the linearized Sanders — Koiter
model are related to the components of displacements by the following relations:

_ Ou B 0*w
61—%7 ’{z—_Wa
Yoy R oy?  ROy|’
SN L )
W oy o Oxdy 4R\ O0x Oy)|’

Substituting (4) into (2) and (3), and then the resulting relations into (1), we obtain a system of
equations of motion of the shell element in displacements

82u+1,u(1+ h2 )32u+1+u<1 (1—p)h? ) 9%

O 2 48R2 | Oy2 2 C16(1 4 p) R? ) 0zdy
9 1—pu)h? 93 1— pu?) 62
udw (Q-phE S (L) O )
R Ox 24R  Ox0y gEy Ot
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2 2 2 a2 _ 2 2
<1+ h >8v+(1+ 3h )1 “6”+<1 1—pu)h >1+u8u

12R2 ) 9y? 16R2) 2 02 C16(1+p)R2) 2 By
10 h? & 3—p)h? 9 1—p?) 92
ROy 12ROy 24R  0x?0y gEy Ot
h? pou 10v 1 (1 —p)h? O3u

12 w+R0x+§07y_ﬁw+ 24R  0z0y?
_ﬁ@_(fﬂ—u)fﬂ v v (1= p?) 9%w

12R dy? 24R 0220y  gE, 02

+f3=0, (7)

in which all nonlinear terms are reduced to f1, fo and f3. The resulting system differs from a
similar system of equations of motion in the classical theory of Kirchhoff — Love shells [32] by
the presence of underlined terms of higher orders of smallness. Taking them into account during
further asymptotic integration, as will be shown below, leads to a new form of the resolving
equation.

Let us introduce dimensionless independent and dependent variables into consideration using
the formulas:

x Y FEpg t
X=-, Y==, T= e
! R YL —p2) 1 (8)
u v w
R’ R’ h
Substituting (8) into the equations of motion (5)-(7) reveals in the latter small parameters of

nonlinearity and thin-walledness % and & | which we will consider to be quantities of the same

order of smallness with the ratio of the physical nonlinearity parameters:
h_ B

=z=_=c (9)

R

l

This assumption is typical for problems of asymptotic analysis of long-wave perturbations [24-26].
According to (9), the dispersion parameter % is a value of the order of £2.

Assuming that a beam of shear waves propagates along the generatrix of the shell, we

introduce into consideration new independent variables and expansions of dependent variables in

powers of the small parameter ¢:
X
2 2
— X, = Y’ = T - —,
X=E¢€ n==¢ T c (10)
U= 53/2U0 + 85/2U1, V= €1/2‘/0 + €5/2V1, W = 63/21;[}) + 55/2W1,

where C' is the yet unknown wave propagation speed. Taking into account (8)-(10), in leading
order in powers of the small parameter, the system of equations (5)—(7) takes the form

ﬁaW() i—l 02U0_(1+,U) 82‘/0 0 (11)
C or C?2 or? 2C 0ron
0%V,
(202 + 1 —1) 6720 =0, (12)
100 gy, Vo, (13)

car T gy
From (12) the dimensionless wave propagation speed

I—p
C =44/ —=.
2
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is determined. The equation (6) in the first essentially nonlinear approximation has the form

Vo 32 =21 0%V 1 9% 14+p 0%Uy
orox  32(1—p) 072 VZ—2u 0 T 2(1—p)oroy
L oy \/m@%)?a% _

V2 =2 On (1—p?\or ) or?

Using (11), (13) to express the terms with the functions Uy and Wy in terms of V{, we give the
equation (14) its final form

(14)

Vo Vo . PV o \? 0%V
ot Ox A or? te on? ¢ (5’7’) or? 0, (15)
where
3 VI—p V2

TV, R T W TR R Y ) BV e

2. Discussion of the properties of equation (15) and construction
of its periodic solutions

An equation similar to (15) was derived in [15] for a quasi-plane shear wave in a medium
with memory. The cubically nonlinear equation (15) contains an additional term with coefficient
c¢1 arising due to the underlined terms in the system (5)—(7). Such an equation with quadratic
nonlinearity formally coincides with the Lin — Reisner — Tsien (LRT) equation modelling unsteady
near-sonic gas flow [33]. Therefore, by analogy with the classical and modified Korteweg -
de Vries equations, (15) can be called the modified LRT equation. At the same time, for the
function f = %, this equation takes the form of the modified Khokhlov —Zabolotskaya (KZ)
equation [33]

2
0 <8f 6f+ f28f> B o°f

or =g

the second summand in the left-hand side of which is eliminated by passing to the corresponding
traveling wave variable. It is known that in nonlinear acoustics the abbreviation KZ is more often
used, while in aerodynamics the abbreviation LRT is more common [33].

With variable transformation

C1 C1
% = 7(1)1 t=c1x, §:CIX+7-7 C: —n
c3 V c2

the equation (15) takes the compact form

2 2 2
0°P <8(I>> 0°®  0°9 - (16)

oo \ag) 2 T a2

typical for problems of gas dynamics and acoustics. It is obvious that equation (16) has a large
set of symmetries, and its invariant group analysis is a separate task for further research.

When analyzing nonlinear wave processes in cubically nonlinear deformable media, the
experimentally established fact of a significant predominance of the phenomenon of wave self-
action over the effect of generation of higher harmonics is usually used [34,35]. This makes it
possible to find a solution to equations of the type (15) in the form of a single harmonic with a
slowly varying complex amplitude

Vo = A(x,n) exp (—iwT) + c.c. (17)
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Substituting (17) into (15), we obtain the perturbed nonlinear Schrodinger equation (NSE) for

the amplitude A
2

A
iwa — qw?A — CQa—nQ + cwt A? |A| = 0. (18)
To find an exact periodic solution to the NSE (18) we make the substitution A (x,n) = a (n) exp (iwx),
after which for the amplitude a (n) we obtain the Duffing equation

d%a 3
d7172 + d1a + dza = 0,
where +1
d1 = Lw2, dQ = —Cjw4‘
C2 C2

A physically consistent solution, depending on the dimensionless circumferential coordinate 7,
must be periodic in 7. This condition is met by the general solution of the Duffing equation in
terms of the Jacobi elliptic function

a = Clsn [91 (9277 + CQ) 793] 5

in which C;, Cy are constants of integration and

2d 1 —(2d1 +d2)d
91:\/ : 92:§V4d1+2d2, g3 =C1 (2, + dy) 2

2d1—|—d2—012d2’ 2dy + do

under condition g3 # +1.

Note that in equation (18) the coefficients in front of the dispersion and nonlinear terms have
opposite signs, that is, a defocusing version of the NSE is obtained. It is known [36] that in this
case, the development of modulation instability is impossible, that is, a spatially homogeneous
solution is stable, as well as solutions in the form of periodic stationary waves.

Conclusion

It has been established that when modelling the propagation of a shear wave beam along a
nonlinear-elastic cylindrical shell, a quasi-hyperbolic equation with cubic nonlinearity, generalizing
the LRT and KZ equations, is formed. Thus, the connection between the problems of nonlinear
wave dynamics of deformable systems, near-sonic gas dynamics, and nonlinear acoustics is
demonstrated. It is shown that cubic nonlinearity allows to transform the derived equation into
the NSE of defocusing type, in which it is impossible to develop the modulation instability of
periodic wave solutions.
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