Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Galaev S. V. Admissible Hypercomplex Structures on Distributions of Sasakian Manifolds. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, vol. 16, iss. 3, pp. 263-272. DOI: 10.18500/1816-9791-2016-16-3-263-272, EDN: WMIIFT

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
14.09.2016
Full text:
(downloads: 159)
Language: 
Russian
Heading: 
UDC: 
514.76
EDN: 
WMIIFT

Admissible Hypercomplex Structures on Distributions of Sasakian Manifolds

Autors: 
Galaev Sergei Vasil'evich, Saratov State University
Abstract: 

The notions of admissible (almost) hypercomplex structure and almost contact hyper-Kahlerian structure are introduced. On a ¨ manifold M with an almost contact metric structure (M, ~ξ, η, ϕ, D) an interior symmetric connection ∇ is defined. In the case of a contact manifold of dimension bigger than or equal to five, it is proved that the curvature tensor of the connection ∇ is zero if and only if there exist adapted coordinate charts with respect to that the coefficients of the interior connection are zero. On the distribution D of an almost contact structure as on the total space of the vector bundle (D, π, M), an admissible almost hypercomplex structure (D, J, J ˜ 1, J2,~u, λ = η ◦ π∗, D) is defined. Under the condition that the admissible almost complex structure ϕ is integrable, it is proved that the constructed almost hypercomplex structure is integrable if and only if the distribution D is a distribution of zero curvature. In the case of a Sasakian structure (M, ~ξ, η, ϕ, g, D), the conditions that imply that the admissible hypercomplex structure (D, J, J ˜ 1, J2,~u, λ = η ◦ π∗, g, D˜ ) is an almost contact hyper-Kahlerian structure. 

References: 
  1. Sasaki S. On the differential geometry of tangent bundles of Riemannian manifolds // Tohoku Math. J. 1958. Vol. 10. P. 338–354.
  2. Dombrowski P. On the geometry of the tangent bundle // J. Reine Angew. Math. 1962. Vol. 210. P. 73–88.
  3. Munteanu M. I. Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold // Mediterr. J. Math. 2008. Vol. 5. P. 43–59.
  4. Kowalski O. Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold // J. Reine Angew. Math. 1971. Vol. 250. P. 124–129.
  5. Musso E., Tricerri F. Riemannian metrics on tangent bundles // Ann. Mat. Pura Appl. 1988. Vol. 150, iss. 4. P. 1–19.
  6. Galaev S. V. The intrinsic geometry of almost contact metric manifolds. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2012, vol. 12, iss. 1, pp. 16–22 (in Russian).
  7. Galaev S. V. Almost contact Ka?hlerian manifolds of constant holomorphic sectional curvature. Russian Math., 2014, iss. 8, pp. 42–52.
  8. Galaev S. V. Almost contact metric spaces with Nconnection. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2015, vol. 15, iss. 3, pp. 258–264. DOI: https://doi.org/10.18500/1816-9791-2015-15-3-258-264.
  9. Galaev S. V. Almost contact metric structures defined by an N-prolonged connection. Yakutian Math. J., 2015, iss. 1, pp. 25–34 (in Russian).
  10. Obata M. Affine connections on manifolds with almost complex, quaternion or Hermitian structure // Jap. J. Math. 1956. Vol. 26. P. 43–77.
  11. Obata M. Affine connections in a quaternion manifold and transformations preserving the structure // J. Math. Soc. Japan. 1957. Vol. 9. P. 406–416.
  12. Bogdanovich S. A., Ermolitski A. A. On almost hyperHermitian structures on Riemannian manifolds and tangent bundles // Cent. Eur. J. Math. 2004. Vol. 2, iss. 5. P. 615–623.
  13. Oproiu V. Hyper-Kahler structures on the tangent ¨ bundle of a Kahler manifold // Balkan J. Geom. ¨ Appl. 2010. Vol. 15, iss. 1. P. 104–119.
  14. Vagner V. V. The geometry of an (n − 1)-dimensional nonholonomic manifold in an n-dimensional space. Trudy Sem. Vektor. Tenzor. Analiza, Moscow, Moscow Univ. Press, 1941, iss. 5, pp. 173–255 (in Russian).
  15. Bejancu A. Kahler contact distributions // J. Geometry and Physics. 2010. Vol. 60. P. 1958–1967.
  16. Schouten J., van Kampen E. Zur Einbettungsund Krummungstheorie nichtholonomer Gebilde // ¨ Math. Ann. 1930. Vol. 103. P. 752–783.
  17. Bukusheva A. V. The geometry of the contact metric spaces ϕ-connection. Belgorod State University Scientific Bulletin. Mathematics & Physics, 2015, no 17 (214), iss. 40, pp. 20–24 (in Russian).
Received: 
20.04.2016
Accepted: 
27.08.2016
Published: 
30.09.2016