Cite this article as:

Abdel Latif M. S. Lie Symmetry Analysis and Some New Exact Solutions for a Variable Coefficient Modified Kortweg – De Vries Equation Arising in Arterial Mechanics. Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 2011, vol. 11, iss. 2, pp. 42-?. DOI: https://doi.org/?


Heading: 
UDC: 
517.957; 512.81
Language: 
English

Lie Symmetry Analysis and Some New Exact Solutions for a Variable Coefficient Modified Kortweg – De Vries Equation Arising in Arterial Mechanics

Abstract: 

In this paper, a variable-coefficient modified Korteweg – de Vries equation is considered. By using the classical symmetry analysis method symmetries for this equation are obtained. Then, the generalized Jacobi elliptic function expansion method is used to solve the reduced ODE. Some new exact solutions for the considered PDE are obtained.

References

1. Demiray H. Variable coefficient modified KdV equation in fluid-filled elastic tubes with stenosis: Solitary waves // Chaos Soliton Fract. 2009. Vol. 42, No 1. P. 358–364.
2. Demiray H. Waves in fluid-filled elastic tubes with a stenosis: Variable coefficients KdV equations // J. Comput. Appl. Math. 2007. Vol. 202. P. 328–338.
3. Demiray H. On the existence of some evolution equations in fluid-filled elastic tubes and their progressive wave solutions // Intern. J. Eng. Sci. 2004. Vol. 42. P. 1693–1706.
4. Кудряшов Н.А., Синельщиков Д.И., Чернявский И.Л. Нелинейные эволюционные уравнения для описания возмущений в вязко-эластичной трубке // Нелинейная динамика. 2008. Т. 4, No 1. С. 69–86.

5. Demiray H. On some nonlinear waves in fluidfilled viscoelastic tubes: weakly dispersive case // Communications in Nonlinear Science and Numerical Simulation. 2005. Vol. 10. P. 425–440.
6. Wazwaz A. The extended tanh method for abundant solitary wave solutions of nonlinear wave equations // Appl. Math. Comput. 2007. Vol. 187. P. 1131–1142.
7. Wazwaz A. New sets of solitary wave solutions to the KdV, mKdV, and the generalized KdV equations // Communications in Nonlinear Science and Numerical Simulation. 2008. Vol. 13. P. 331–339.
8. Yin-Long Z., Yin-Ping L., Zhi-Bin L. A connection between the ( G′ G )-expansion method and the truncated Painleve expansion method and its application to the  ́ mKdV equation // Chin. Phys. B. 2010. Vol. 19. P. 1395– 1404.

9. Olver P.J. Applications of Lie Groups to Differential Equations. N.Y.: Springer-Verlag, 1985.
10. Bluman G.W., Kumei S. Symmetries and Differential Equations. N.Y.: Springer-Verlag, 1989.
11. Liu H., Li J. Lie symmetry analysis and exact solutions for the extended mKdV equation // Acta. Appl. Math. 2010. Vol. 109. P. 1107–1119.
12. Zhao X., Zhi H., Zhang H. Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system // Chaos Soliton Fract. 2006. Vol. 28. P. 112–126.
13. El-Wakil S.A., Madkour M.A., Abdou M.A. New traveling wave solutions for nonlinear evolution equations // Phys. Lett. A. 2007. Vol. 365. P. 429–438.
14. Zhong W., BelicM R., Lu Y., Huang T. Traveling and solitary wave solutions to the one-dimensional Gross- Pitaevskii equation // Phys. Rev. E. 2010. Vol. 81, 016605.
15. Haldar K. Effects of the shape of stenosis on the resistance to blood flow through an artery // Bul. Math. Biol. 1985. Vol. 47, No 4. P. 545–550.
16. Mekheimer K.S., El Kot M.A. Influence of magnetic field and hall currents on blood flow through a stenotic artery // Appl. Math. Mech. 2008. Vol. 29, No 8. P. 1093– 1104.

Full text: