Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Akniev G. G. Approximation Properties of Dicrete Fourier Sums for Some Piecewise Linear Functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2018, vol. 18, iss. 1, pp. 4-16. DOI: 10.18500/1816-9791-2018-18-1-4-16, EDN: YABQPB

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
28.03.2019
Full text:
(downloads: 181)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.521.2
EDN: 
YABQPB

Approximation Properties of Dicrete Fourier Sums for Some Piecewise Linear Functions

Autors: 
Akniev G. G., Daghestan Scientific Centre of Russian Academy of Sciences
Abstract: 

Let N be a natural number greater than 1. We select N uniformly distributed points t_k = 2πk/N (0 < k < N − 1) on [0,2\pi]. Denote by  L_ n,N (f) = L _n,N (f,x)1 < n < ⌊N/2⌋  the trigonometric polynomial of order n possessing the least quadratic deviation from f with respect to the system tk{k=0}^{N-1}. In other words, the greatest lower bound of the sums on the set of trigonometric polynomials Tn of order n is attained by L_n,N (f). In the present article the problem of function approximation by the polynomials L_n,N (f,x)  is considered. Using some example functions we show that the polynomials Ln,N (f,x) uniformly approximate a piecewise-linear continuous function with a convergence rate O(1/n) with respect to the variables  x  ∈ R and  1 < n < N/2.These polynomials also uniformly approximate the same function with a rate O(1/n^2) outside of some neighborhood of function’s „crease“points. Also we show that the polynomials Ln,N (f,x) uniformly approximate a piecewise-linear discontinuous function with a rate O(1/n) with respect to the variables x and 1< n < N/2 outside some neighborhood of discontinuity points.  Special attention is paid to approximation of 2π-periodic functions f1 and f2 by the polynomials L n,N (f,x), where f1 (x) = |x| and f2 (x) = sign x for x ∈ [−π,π]. For the first function f1 we show that instead of the estimate |f1 (x) − L n,N (f1 ,x)| < clnn/n which follows from the well-known Lebesgue inequality for the polynomials L n,N (f,x) we found an exact order estimate |f1 (x) − L n,N (f1 ,x)| < c/n (x ∈ R) which is uniform relative to 1 < n < N/2. Moreover, we found a local estimate |f1 (x) − L n,N (f1 ,x)| < c(ε)/n 2 (|x − πk| > ε) which is also uniform relative to 1 < n < N/2.For the second function f2 we found only a local estimate |f 2 (x) − L n,N (f2 ,x)| < c(ε)/n (|x − πk| > ε) which is uniform relative to 1 < n < N/2. The proofs of these estimations are based on comparing of approximating properties of discrete and continuous finite Fourier series.

References: 
  1. Sharapudinov I. I. On the best approximation and polynomials of the least quadratic deviation. Analysis Math., 1983, vol. 9, iss. 3, pp. 223–234. DOI: https://doi.org/10.1007/BF01989807
  2. Bernshtein S. N. O trigonometricheskom interpolirovanii po sposobu naimen’shih kvadratov [On trigonometric interpolation by the least squares method]. Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 1934, vol. 4, no. 1, pp. 1–5 (in Russian).
  3. Erdös P. Some theorems and remarks on interpolation. Acta Sci. Math. (Szeged), 1950,vol. 12, pp. 11–17.
  4. Kalashnikov M. D. O polinomah nailuchshego (kvadraticheskogo) priblizheniya v zadannoy sisteme tochek [On polynomials of best quadratic approximation in a given system of points]. Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 1955, vol. 105, pp. 634–636 (in Russian).
  5. Krylov V. I. Shodimost algebraicheskogo interpolirovaniya po kornyam mnogochlena Chebisheva dlya absolutno neprerivnih funkciy i funkciy s ogranichennim izmeneniyem [Convergence of algebraic interpolation with respect to the roots of Chebyshev’s polynomial for absolutely continuous functions and functions of bounded variation]. Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 1956, vol. 107, pp. 362–365 (in Russian).
  6. Marcinkiewicz J. Quelques remarques sur l’interpolation. Acta Sci. Math. (Szeged), 1936, vol. 8, pp. 127–130.
  7. Marcinkiewicz J. Sur la divergence des polynômes d’interpolation. Acta Sci. Math. (Szeged), 1936, vol. 8, pp. 131–135.
  8. Natanson I. P. On the convergence of trigonometrical interpolation at equidistant knots. Ann. Math., 1944, vol. 45, pp. 457–471.
  9. Nikolski S. Sur certaines méthodes d’approximation au moyen de sommes trigonométriques. Izv. Akad. Nauk SSSR, Ser. Mat. [Bull. Acad. Sci. URSS. Ser. Math.], 1940, vol. 4, iss. 6, pp. 509–520 (in Russian. French summary).
  10. Turethkii A. H. Teoriya interpolirovaniya v zadachakh [Interpolation theory in problems]. Minsk, Vysheishaya Shkola, 1968. 320 p. (in Russian).
  11. Zygmund A. Trigonometric Series, vol. 1–2. Cambridge University Press, 2015. 747 p.
  12. Fikhtengol’ts G. M. Course of Differential and Integral Calculus, in 3 vols., vol. 3. Moscow, FIZMATLIT, 1969. 656 p (in Russian).
  13. Magomed-Kasumov M. G. Approximation properties of de la Vallée-Poussin means for piecewise smooth functions. Math. Notes, 2016, vol. 100, iss. 2, pp. 229–244. DOI: https://doi.org/10.1134/S000143461607018X
Received: 
18.10.2017
Accepted: 
20.02.2018
Published: 
28.03.2018
Short text (in English):
(downloads: 62)