Математика

ПРИБЛИЖАЮЩИЕ СВОЙСТВА СТЕПЕНЕЙ РЕЗОЛЬВЕНТЫ ОПЕРАТОРА ДИФФЕРЕНЦИРОВАНИЯ

Построены семейства операторов и исследованы их аппроксимирующие свойства в задаче приближения производных функций и в задаче приближения гладких решений интегральных уравнений.

СМЕШАННАЯ ЗАДАЧА ДЛЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ С ИНВОЛЮЦИЕЙ И ПОТЕНЦИАЛОМ СПЕЦИАЛЬНОГО ВИДА

Для решения некоторой смешанной задачи с инволюцией и вещественным симметричным потенциалом найдено явное аналитическое представление методом Фурье. При этом использованы приемы, позволяющие избегать почленного дифференцирования функционального ряда и накладывать минимальные условия на начальные данные задачи.

О ПРИБЛИЖЕННОМ РЕШЕНИИ ЗАДАЧИ ОБ АСФЕРИЧНОСТИ ВЫПУКЛОГО КОМПАКТА

Рассматривается конечномерная задача о минимизации отношения радиуса описанного шара заданного выпуклого компакта (в произвольной норме) к радиусу вписанного шара за счет выбора единого центра этих шаров. Предлагается подход к построению численного метода её решения. На каждом шаге итерационного процесса требуется решать задачу выпуклого программирования, целевая функция которой является разностью радиуса описанного шара и, с некоторым варьируемым положительным множителем, радиуса вписанного шара.

ОБРАТНАЯ ЗАДАЧА СПЕКТРАЛЬНОГО АНАЛИЗА ДЛЯ МАТРИЧНОГО УРАВНЕНИЯ ШТУРМА – ЛИУВИЛЛЯ

Исследуется обратная спектральная задача для матричного уравнения Штурма – Лиувилля на конечном интервале. Приведены свойства спектральных характеристик, получена конструктивная процедура решения обратной задачи и необходимые и достаточные условия ее разрешимости.

 

ЕДИНСТВЕННОСТЬ РЕШЕНИЯ ОБРАТНОЙ ЗАДАЧИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ НА ПРОИЗВОЛЬНЫХ КОМПАКТНЫХ ГРАФАХ

Исследуется обратная спектральная задача для операторов Штурма – Лиувилля на произвольных компактных графах со стандартными условиями склейки во внутренних вершинах. Доказана теорема единственности восстановления потенциалов по спектрам.

КОНЕЧНЫЕ ЗАМКНУТЫЕ 3(4)-КОНТУРЫ РАСШИРЕННОЙ ГИПЕРБОЛИЧЕСКОЙ ПЛОСКОСТИ

Введены в рассмотрение конечные замкнутые n-контуры расширенной гиперболической плоскости H2. Подробно исследованы топологические и метрические свойства конечных замкнутых 3(4)-контуров. Получены аналоги предложения Паша. Доказано: существование двух типов 4-контуров; выпуклость простого 4-контура.

ПРИБЛИЖЕННОЕ РЕШЕНИЕ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ДЛЯ ЛИНЕЙНОЙ НЕОДНОРОДНОЙ СИСТЕМЫ В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ

Для задачи оптимального управления с линейным дифференциальным уравнением в гильбертовом пространстве и квадратичным функционалом получены необходимые и достаточные условия оптимальности управлений и приближенные формулы их разложений в ряд по собственным и присоединенным элементам оператора, входящего в это уравнение.

ОСИ СИММЕТРИИ ПОЛИНОМИАЛЬНЫХ ДИФФЕРЕНЦИАЛЬНЫХ СИСТЕМ НА ПЛОСКОСТИ

Вводится понятие оси симметрии N-типа. Доказывается, что векторное поле, определяемое системой дифференциальных уравнений с полиномами n-й степени в правых частях, не может иметь четного числа осей симметрии N-типа при n = 2m,m ∈ N. Для случая n = 2,3 проведено полное исследование данной системы на N-симметрию. В зависимости от числа осей симметрии N-типа найдены специальные формы записи квадратичных и кубичных систем, которые позволяют упростить качественное исследование таких систем.

О НЕКОТОРЫХ КРАЕВЫХ ЗАДАЧАХ В ПОЛУПРОСТРАНСТВЕ ДЛЯ ОДНОГО КЛАССА ПСЕВДОДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ВЫРОЖДЕНИЕМ

Рассматриваются краевые задачи в полупространстве для одного класса псевдодифференциальных уравнений. Установлены коэрцитивные априорные оценки и теоремы о существовании решений таких краевых задач.

 

Страницы