Математика

ЕДИНСТВЕННОСТЬ РЕШЕНИЯ ОБРАТНОЙ ЗАДАЧИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ НА ПРОИЗВОЛЬНЫХ КОМПАКТНЫХ ГРАФАХ

Исследуется обратная спектральная задача для операторов Штурма – Лиувилля на произвольных компактных графах со стандартными условиями склейки во внутренних вершинах. Доказана теорема единственности восстановления потенциалов по спектрам.

КОНЕЧНЫЕ ЗАМКНУТЫЕ 3(4)-КОНТУРЫ РАСШИРЕННОЙ ГИПЕРБОЛИЧЕСКОЙ ПЛОСКОСТИ

Введены в рассмотрение конечные замкнутые n-контуры расширенной гиперболической плоскости H2. Подробно исследованы топологические и метрические свойства конечных замкнутых 3(4)-контуров. Получены аналоги предложения Паша. Доказано: существование двух типов 4-контуров; выпуклость простого 4-контура.

ПРИБЛИЖЕННОЕ РЕШЕНИЕ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ДЛЯ ЛИНЕЙНОЙ НЕОДНОРОДНОЙ СИСТЕМЫ В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ

Для задачи оптимального управления с линейным дифференциальным уравнением в гильбертовом пространстве и квадратичным функционалом получены необходимые и достаточные условия оптимальности управлений и приближенные формулы их разложений в ряд по собственным и присоединенным элементам оператора, входящего в это уравнение.

ОСИ СИММЕТРИИ ПОЛИНОМИАЛЬНЫХ ДИФФЕРЕНЦИАЛЬНЫХ СИСТЕМ НА ПЛОСКОСТИ

Вводится понятие оси симметрии N-типа. Доказывается, что векторное поле, определяемое системой дифференциальных уравнений с полиномами n-й степени в правых частях, не может иметь четного числа осей симметрии N-типа при n = 2m,m ∈ N. Для случая n = 2,3 проведено полное исследование данной системы на N-симметрию. В зависимости от числа осей симметрии N-типа найдены специальные формы записи квадратичных и кубичных систем, которые позволяют упростить качественное исследование таких систем.

О НЕКОТОРЫХ КРАЕВЫХ ЗАДАЧАХ В ПОЛУПРОСТРАНСТВЕ ДЛЯ ОДНОГО КЛАССА ПСЕВДОДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ВЫРОЖДЕНИЕМ

Рассматриваются краевые задачи в полупространстве для одного класса псевдодифференциальных уравнений. Установлены коэрцитивные априорные оценки и теоремы о существовании решений таких краевых задач.

 

О КРАТНОЙ ПОЛНОТЕ КОРНЕВЫХ ФУНКЦИЙ ОДНОГО КЛАССА ПУЧКОВ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ

В пространстве L 2 [0,1] рассматривается полиномиальный пучок обыкновенных дифференциальных операторов n-гопорядка,порожденный однородным дифференциальным выражением с постоянными коэффициентами и двух точечными краевыми условиями специальной структуры с l условиями только в нуле(1 ≤ l ≤ n − 1). Предполагается, что корни характеристического уравнения лежат на одном луче, исходящем из началакоординат. Найдено достаточное условие m-кратной полнотысистемы корневых функций при m ≤ n − l в пространстве L 2 [0,1]. Показана точность полученного результата.

ИНТЕГРИРУЕМОСТЬ ЧАСТНОГО ВИДА УРАВНЕНИЯ ЛЁВНЕРА

Приводится решение в квадратурах частного случая уравнения Лёвнера для полуплоскости.

АСИМПТОТИЧЕСКИЕ СВОЙСТВА МНОГОЧЛЕНОВ ˆ pα,β n (x), ОРТОГОНАЛЬНЫХ НА ПРОИЗВОЛЬНЫХ СЕТКАХ В СЛУЧАЕ ЦЕЛЫХ α И β

В этой работе исследуются асимптотические свойства многочленов pˆα,βn (x), ортогональных с весом (1 − xj)α(1 + xj)βtj на произвольных сетках, состоящих из конечного числа N точек отрезка [−1,1].

КОЛЬЦА КОГОМОЛОГИЙ ПОЛУКУБИЧЕСКИХ МНОЖЕСТВ

Работа посвящена определению структуры кольца на градуированной группе когомологий полукубического множества с коэффициентами в кольце с единицей.

Страницы