Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Shabrykina N. S. Modelling of Microcirculation: Unsteady Interstitial Fluid Flow in Tissue. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2007, vol. 7, iss. 1, pp. 69-73. DOI: 10.18500/1816-9791-2007-7-1-69-73

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
14.05.2007
Full text:
(downloads: 252)
Language: 
Russian
Heading: 
UDC: 
531/534: [57+61]

Modelling of Microcirculation: Unsteady Interstitial Fluid Flow in Tissue

Autors: 
Shabrykina Natalia Sergeevna, Saratov State University
Abstract: 

Microcirculation is a key element of human metabolism. Every pathological condition of human organism causes different changes in blood flow. And vice versa, many of the microcirculatory disorders appear before and stay longer after then other disease symptoms. Modelling of microcirculation help us to understand complex interconnected metabolic processes, to find out causes of different diseases and to offer ways of their treatment.

Key words: 
References: 
  1. Popel A., Pittman R. Mechanics and transport in the microcirculation // Biomechanics: principles and applications / Ed. by D.J. Schneck, J.F. Bronzino. L.; N.Y.; Washington: CRT Press, 2002.
  2. Nyashin Y.I., Nyashin M.Y., Shabrykina N.S. Models of microcirculation and extravascular fluid exchange // Russian J. of Biomechanics. 2002. V. 6, № 2. P. 62–77.
  3. Walburn F.J., Schneck D.J. A constitutive equation for whole human blood // Biorheology. 1976. V.13. P.201–210.
  4. Swartz M.A., Kaipainen A., Netti P.A. Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation // J. of Biomechanics. 1999. V. 32. P. 1297–1307.
  5. Шабрыкина Н.С. Математическое моделирование микроциркуляторных процессов // Рос. журн. биомеханики. 2005. Т. 9, № 3. С. 70–88.
  6. Starling E.H. On the adsorbtion of fluid from interstitial spaces // J. Physiol. 1896. № 19. P. 312–326.
  7. Шабрыкина Н.С. Математическое моделирование микроциркуляторных процессов: нестационарная модель // Рос. журн. биомеханики. 2006. Т. 10, № 4. С. 70–83.
  8. Fung Y.C. Biomechanics: mechanical properties of living tissues. N.Y., Berlin: Springer-Verlag, 1993.
  9. Netti P.A., Baxter L.T., Boucher Y., Skalak R., Jain R.K. Macro- and microscopic fluid transport in living tissues: application to solid tumors // AIChE J. 1997. V. 43. P. 818–834.
  10. Gurfinkel Yu.I. Computer capillaroscopy as a channel of local visualization, noninvasive diagnostics, and screening of substances in circulating blood // Optical Technologies in Biophysics and Medicine- II, V.V. Tuchin — Editor. Proc. SPIE. 2000. V. 4241. P. 467–472.
  11. Федорович А.А. Капиллярная гемодинамика в эпонихии верхней конечности // Регионарное кровообращение и микроциркуляция. 2006. Т. 5, № 1. С. 20–28.