Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Glukhova O. E., Kolesnikova A. S., Slepchenkov M. M., Savostianov G. V. Technique of Definition Areas Requiring a Quantum Description Within of the Hybrid Method (Quantum Mechanics / Molecular Mechanics). Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 4, pp. 59-66. DOI: 10.18500/1816-9791-2013-13-4-59-66

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
15.12.2013
Full text:
(downloads: 250)
Language: 
Russian
Heading: 
UDC: 
51-73

Technique of Definition Areas Requiring a Quantum Description Within of the Hybrid Method (Quantum Mechanics / Molecular Mechanics)

Autors: 
Glukhova Ol'ga Evgen'evna, Saratov State University
Kolesnikova Anna Sergeevna, Saratov State University
Slepchenkov Mikhail Mikhailovich, Saratov State University
Savostianov Georgy Vasil'evich, Saratov State University
Abstract: 

The new model, which determines the active area (the region for which high-precision quantum methods must be used) of the structure,was developed within the of the hybrid method (QM/MM). Problem of determining atoms with the critical tension values is the basis of this model. The potential energy of these atoms and its nearest neighbours was calculated by quantum-chemical method. The potential energy of the rest structure was calculated by molecular mechanical method. The Hybrid method (QM/MM) allows to reveal with high accuracy optimum topology structure and increase the speed of finding its equilibrium state.

References: 
  1.  Хурсан С. Л. Квантовая механика и квантовая химия. Конспекты лекций. Уфа : ЧП Раянов, 2005. 164 с.
  2. Аминова Р. М. Основы современной квантовой химии / Казан. гос. ун-т. Казань, 2004. 106 с.
  3. Сатанин А. М. Введение в теорию функционала плотности : учеб.-метод. пособие / Нижегород. гос. ун-т им. Н. И. Лобачевского. Н. Новгород, 2009. 64 с.
  4. Блатов В. А., Шевченко А. П., Пересыпкина Е. В. Полуэмпирические расчетные методы квантовой химии : учеб. пособие. Самара : Универс-групп, 2005.32 с.
  5. Глухова О. Е., Жбанов А. И. Равновесное состояние нанокластеров C60, C70, C72 и локальные дефекты молекулярного остова // Физика твердого тела. 2003. Т. 45, вып. 1. С. 189–196.
  6. Goodwin L. A. New tight-binding parametrization for carbon // J. Phys. : Condens. Matter. 1991. Vol. 3.P. 3869–3878.
  7. Харрисон У. Электронная структура и свойства твердых тел. М. : Мир, 1983. 381 с.
  8. Tersoff J. Modeling solid-state chemistry : Interatomic potentials for mnlticomponent systems // Phys. Rev. B. 1989. Vol. 39, № 8. P. 5566–5568.
  9. Brenner D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films // Phys. Rev. B. 1990. Vol. 42, № 15. P. 9458–9471.
  10. Stuart S. J., Tutein A. B., Harrison J. A. A reactive potential for hydrocarbons with intermolecular interactions // J. Chem. Phys. 2000. Vol. 112, № 14. P. 6472–6486.
  11. Глухова О. Е. Изучение механических свойств углеродных нанотрубок стручкового типа на молекулярно-механической модели // Физика волновых процессов и РС. 2009. Т. 12, № 1. С. 69–75.
  12. Kerdcharoen T., Liedl K. R., Rode B. M. A QM/MM simulation method applied to the solution of Li* in liquid ammonia // Chem. Phys. 1996. Vol. 211. P. 313–323.
  13. Hofer T. S., Pribil A. B., Randolf B. R., Rode B. M. Structure and Dynamics of Solvated Sn(II) in Aqueous Solution : An ab Initio QM/MM MD Approach // J. Am. Chem. Soc. 2005. Vol. 127. P.14231–14238. 
  14. Kerdcharoen T., Morokuma K. J. Combined QM/MM Simulation of Ca2+/Ammonia Solution based on ONIOM-XS Method : Octahedral Coordination and Implication to Biology // Chem. Phys. 2003. Vol. 118. P. 8856–8863.
  15. Kerdcharoen T., Morokuma K. ONlOM-XS : an extension of the ONlOM method for molecular simulation in condensed phase // Chem. Phys. Lett. 2002, Vol. 355. P. 257–262.
  16. Heyden A., Lin H., Truhlar D. G.Adaptive partitioning in combined quantum mechanical and multiscale simulations // J. Phys. Chem. B. 2007. Vol. 111. P. 2231–2241.
  17. Glukhova O. E., Kolesnikova A. S., Kossovich E. L., Zhnichkov R. Y. Super strong nanoindentors for biomedical applications based on bamboo-like nanotubes// Proc. of SPIE. 2012. Vol. 8233. P. 823311(8).
  18. Stuarta S. J., Tutein A. B., Harrison J. A. A reactive potential for hydrocarbons with intermolecular interactions // J. Chem. Phys. 2000. Vol. 112, № 14. P. 6472–6486
  19. Glukhova O. E., Slepchenkov M. M. Influence of the curvature of deformed graphene nanoribbons on their electronic and adsorptive properties : theoretical investigation based on the analysis of the local stress field for an atomic grid // Nanoscale. 2012. Vol. 11. P. 3335–3344.
  20. Уилкинсон Дж. Х. Алгебраическая проблема собственных значений. М. : Наука, Физматлит, 1970. 564 c.
Short text (in English):
(downloads: 107)