For citation:
Glukhova O. E., Kolesnikova A. S., Slepchenkov M. M., Savostianov G. V. Technique of Definition Areas Requiring a Quantum Description Within of the Hybrid Method (Quantum Mechanics / Molecular Mechanics). Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 4, pp. 59-66. DOI: 10.18500/1816-9791-2013-13-4-59-66
Technique of Definition Areas Requiring a Quantum Description Within of the Hybrid Method (Quantum Mechanics / Molecular Mechanics)
The new model, which determines the active area (the region for which high-precision quantum methods must be used) of the structure,was developed within the of the hybrid method (QM/MM). Problem of determining atoms with the critical tension values is the basis of this model. The potential energy of these atoms and its nearest neighbours was calculated by quantum-chemical method. The potential energy of the rest structure was calculated by molecular mechanical method. The Hybrid method (QM/MM) allows to reveal with high accuracy optimum topology structure and increase the speed of finding its equilibrium state.
- Хурсан С. Л. Квантовая механика и квантовая химия. Конспекты лекций. Уфа : ЧП Раянов, 2005. 164 с.
- Аминова Р. М. Основы современной квантовой химии / Казан. гос. ун-т. Казань, 2004. 106 с.
- Сатанин А. М. Введение в теорию функционала плотности : учеб.-метод. пособие / Нижегород. гос. ун-т им. Н. И. Лобачевского. Н. Новгород, 2009. 64 с.
- Блатов В. А., Шевченко А. П., Пересыпкина Е. В. Полуэмпирические расчетные методы квантовой химии : учеб. пособие. Самара : Универс-групп, 2005.32 с.
- Глухова О. Е., Жбанов А. И. Равновесное состояние нанокластеров C60, C70, C72 и локальные дефекты молекулярного остова // Физика твердого тела. 2003. Т. 45, вып. 1. С. 189–196.
- Goodwin L. A. New tight-binding parametrization for carbon // J. Phys. : Condens. Matter. 1991. Vol. 3.P. 3869–3878.
- Харрисон У. Электронная структура и свойства твердых тел. М. : Мир, 1983. 381 с.
- Tersoff J. Modeling solid-state chemistry : Interatomic potentials for mnlticomponent systems // Phys. Rev. B. 1989. Vol. 39, № 8. P. 5566–5568.
- Brenner D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films // Phys. Rev. B. 1990. Vol. 42, № 15. P. 9458–9471.
- Stuart S. J., Tutein A. B., Harrison J. A. A reactive potential for hydrocarbons with intermolecular interactions // J. Chem. Phys. 2000. Vol. 112, № 14. P. 6472–6486.
- Глухова О. Е. Изучение механических свойств углеродных нанотрубок стручкового типа на молекулярно-механической модели // Физика волновых процессов и РС. 2009. Т. 12, № 1. С. 69–75.
- Kerdcharoen T., Liedl K. R., Rode B. M. A QM/MM simulation method applied to the solution of Li* in liquid ammonia // Chem. Phys. 1996. Vol. 211. P. 313–323.
- Hofer T. S., Pribil A. B., Randolf B. R., Rode B. M. Structure and Dynamics of Solvated Sn(II) in Aqueous Solution : An ab Initio QM/MM MD Approach // J. Am. Chem. Soc. 2005. Vol. 127. P.14231–14238.
- Kerdcharoen T., Morokuma K. J. Combined QM/MM Simulation of Ca2+/Ammonia Solution based on ONIOM-XS Method : Octahedral Coordination and Implication to Biology // Chem. Phys. 2003. Vol. 118. P. 8856–8863.
- Kerdcharoen T., Morokuma K. ONlOM-XS : an extension of the ONlOM method for molecular simulation in condensed phase // Chem. Phys. Lett. 2002, Vol. 355. P. 257–262.
- Heyden A., Lin H., Truhlar D. G.Adaptive partitioning in combined quantum mechanical and multiscale simulations // J. Phys. Chem. B. 2007. Vol. 111. P. 2231–2241.
- Glukhova O. E., Kolesnikova A. S., Kossovich E. L., Zhnichkov R. Y. Super strong nanoindentors for biomedical applications based on bamboo-like nanotubes// Proc. of SPIE. 2012. Vol. 8233. P. 823311(8).
- Stuarta S. J., Tutein A. B., Harrison J. A. A reactive potential for hydrocarbons with intermolecular interactions // J. Chem. Phys. 2000. Vol. 112, № 14. P. 6472–6486
- Glukhova O. E., Slepchenkov M. M. Influence of the curvature of deformed graphene nanoribbons on their electronic and adsorptive properties : theoretical investigation based on the analysis of the local stress field for an atomic grid // Nanoscale. 2012. Vol. 11. P. 3335–3344.
- Уилкинсон Дж. Х. Алгебраическая проблема собственных значений. М. : Наука, Физматлит, 1970. 564 c.
- 1272 reads