Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Chernyshova G. Y., Rasskazkin N. D. Software implementation of ensemble models for the analysis of regional socio-economic development indicators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 1, pp. 130-137. DOI: 10.18500/1816-9791-2022-22-1-130-137, EDN: XEKOIL

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.03.2022
Full text:
(downloads: 1879)
Language: 
English
Heading: 
Article type: 
Article
UDC: 
519.688
EDN: 
XEKOIL

Software implementation of ensemble models for the analysis of regional socio-economic development indicators

Autors: 
Chernyshova Galina Yu., Saratov State University
Rasskazkin Nikita D., Saratov State University
Abstract: 

To predict indicators, modern approaches based on machine learning are increasingly being used, as a result, additional tools appear for quantitatively assessing the level of development of socio-economic systems. One of the relevant approaches in machine learning is the use of ensemble methods. The purpose of this study is to develop an approach for processing panel data using special regression models, in particular, the ensembles. An application is presented to implement and compare various regression models, including GPBoost, for panel data used in regional statistics. The application was tested on the example of assessing the innovative potential of Russian regions. 

Acknowledgments: 
This work was supported by the Russian Foundation for Basic Research (project No. 20-010-00465).
References: 
  1. Aivazian S. A. Metody ekonometriki [Methods of Econometrics]. Moscow, INFRA-M, 2019. 512 p. (in Russian).
  2. Greene W. H. Econometric Analysis. 5th ed. Upper Saddle River, NJ, Prentice Hall, 2003. 1026 p.
  3. Hajjem A., Bellavance F., Larocque D. Mixed-effects random forest for clustered data. Journal of Statistical Computation and Simulation, 2014, vol. 84, iss. 6, pp. 1313–1328. https://doi.org/10.1080/00949655.2012.741599
  4. Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Liu T. Y. LightGBM: A highly efficient gradient boosting decision tree. Advances in neural information processing system, 2017, vol. 30, pp. 3146–3154.
  5. Firsova A., Chernyshova G. Efficiency analysis of regional innovation development based on DEA Malmquist index. Information, 2020, vol. 11, no. 6, 294. https://doi.org/10.3390/info11060294
  6. Veshneva I., Chernyshova G. The scenario modeling of regional competitiveness risks based on the Chapman-Kolmogorov equations. Journal of Physics: Conference Series (JPCS), 2021, vol. 1784, iss. 1, 012008. https://doi.org/10.1088/1742-6596/1784/1/012008
  7. Gurka M. J., Kelley G. A., Edwards L. J. Fixed and random effects models. Wiley Interdisciplinary Reviews: Computational Statistics, 2011, vol. 4, iss. 2, 181–190. https://doi.org/10.1002/wics.201
  8. Breiman L., Friedman J. H., Stone C. J., Olshen R. A. Classication and Regression Trees. 1st ed. New York, CRC Press, 1984. 368 p. https://doi.org/10.1201/9781315139470
  9. Laird N. M., Ware J. H. Random-effects models for longitudinal data. Biometrics, 1982, no. 38, pp. 963–974.
  10. Pinheiro J., Bates D. Mixed-Effects Models in S and S-PLUS. Springer Science & Business Media, 2006. 528 p.
  11. Rasmussen C. E., Williams C. K. J. Gaussian Processes for Machine Learning. The MIT Press, 2006. 266 p.
  12. Sigrist F. Gaussian Process Boosting. arXiv preprint arXiv, 2020.
  13. Baltagi B. H. Econometric Analysis of Panel Data. 6th ed. Chichester, John Wiley & Sons, 2021. 436 p.
  14. Information Analysis System FIRA PRO. Available at: https://pro.fira.ru (accessed 15 September 2021).
Received: 
24.11.2021
Accepted: 
21.12.2021
Published: 
31.03.2022