Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Nápoles J. E., Guzmán P. M., Bayraktar B. New integral inequalities in the class of functions (h, m)-convex. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 2, pp. 173-183. DOI: 10.18500/1816-9791-2024-24-2-173-183, EDN: WYDLVW

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.05.2024
Full text:
(downloads: 191)
Language: 
English
Heading: 
Article type: 
Article
UDC: 
517.518.86:517.218.244:517.927.2
EDN: 
WYDLVW

New integral inequalities in the class of functions (h, m)-convex

Autors: 
Nápoles Juan E., National University of the Northeast (UNNE)
Guzmán Paulo Matias, National University of the Northeast (UNNE)
Bayraktar Bahtiyar, Bursa Uludag University
Abstract: 

In this article, we have defined new weighted integral operators. We formulated a lemma in which we obtained a generalized identity through these integral operators. Using this identity, we obtain some new generalized Simpson's type inequalities for $(h,m)$-convex functions. These results we obtained using the convexity property, the classical Hölder inequality, and its other form, the power mean inequality. The generality of our results lies in two fundamental points: on the one hand, the integral operator used and, on the other, the notion of convexity. The first, because the ''weight''  allows us to encompass many known integral operators (including the classic Riemann and Riemann – Liouville), and the second, because, under an adequate selection of the parameters, our notion of convexity contains several known notions of convexity. This allows us to show that many of the results reported in the literature are particular cases of ours.

References: 
  1. Napoles J. E., Rabossi F., Samaniego A. D. Convex functions: Ariadne’s thread or Sharlotte’s spiderweb? Advanced Mathematical Models & Applications, 2020, vol. 5, iss. 2, pp. 176–191.
  2. Alomari M., Hussain S. Two inequalities of Simpson type for quasi-convex functions and applications. Applied Mathematics E-Notes, 2011, vol. 11, pp. 110–117.
  3. Set E., Ozdemir E., Sarıkaya M. Z. On new inequalities of Simpson’s type for quasi-convex functions with applications. Tamkang Journal of Mathematics, 2012, vol. 43, iss. 3, pp. 357–364. https://doi.org/10.5556/j.tkjm.43.2012.616
  4. Bayraktar B. Some integral inequalities for functions whose absolute values of the third derivative is concave and r-convex. Turkish Journal of Inequalities, 2020, vol. 4, iss. 2, pp. 59–78.
  5. Bayraktar B., Napoles J. E., Rabossi F. On generalizations of integral inequalities. Problemy Analiza – Issues of Analysis, 2022, vol. 11 (29), iss. 2, pp. 3–23. https://doi.org/10.15393/j3.art.2022.11190
  6. Dragomir S. S., Agarwal R. P., Cerone P. On Simpson’s inequality and applications. Journal of Inequalities and Applications, 2000, vol. 5, iss. 6, pp. 533–579. https://doi.org/10.1155/S102558340000031X
  7. Liu Z. An inequality of Simpson type. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 2005, vol. 461, iss. 2059, pp. 2155–2158. https://doi.org/10.1098/rspa.2005.1505
  8. Hussain S., Qaisar S. Generalizations of Simpson’s type inequalities through preinvexity and prequasiinvexity. Punjab University Journal of Mathematics, 2014, vol. 46, iss. 2, pp. 1–9.
  9. Park J. Hermite – Hadamard type and Simpson’s type inequalities for the decreasing (α, m)- geometrically convex functions. Applied Mathematical Sciences, 2014, vol. 61–64, pp. 3181–3195.
  10. Sarıkaya M. Z., Set E., Ozdemir M. E. On new inequalities of Simpson’s type for s-convex functions. Computers & Mathematics with Applications, 2010, vol. 60, iss. 8, pp. 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033
  11. Desalegn H., Mijena J. B., Nwaeze E. R., Abdi T. Simpson’s type inequalities for s-convex functions via a generalized proportional fractional integral. Foundations, 2022, vol. 2, pp. 607–616. https://doi.org/10.3390/foundations2030041
  12. Hua J., Xi B.-Y., Qi F. Some new inequalities of Simpson type for strongly s-convex functions. Afrika Matematika, 2015, vol. 26, pp. 741–752 http://dx.doi.org/10.1007/s13370-014-0242-2
  13. Kashuri A., Meftah B., Mohammed P. O. Some weighted Simpson type inequalities for differentiable s-convex functions and their applications. Journal of Fractional Calculus and Nonlinear Systems, 2021, vol. 1, iss. 1, pp. 75–94. http://dx.doi.org/10.48185/jfcns.v1i1.150
  14. Du T. S., Li Y. J., Yang Z. Q. A generalization of Simpson’s inequality via differentiable mapping using extended (s, m)-convex functions. Applied Mathematics and Computation, 2017, vol. 293, pp. 358–369. https://doi.org/10.1016/j.amc.2016.08.045
  15. Du T. S., Liao J. G., Li Y. J. Properties and integral inequalities of Hadamard – Simpson type for the generalized (s, m)-preinvex functions, Journal of Nonlinear Sciences and Applications, 2016, vol. 9, iss. 5, pp. 3112–3126. http://dx.doi.org/10.22436/jnsa.009.05.102
  16. Luo C., Du T. Generalized Simpson type inequalities involving Riemann – Liouville fractional integrals and their applications. Filomat, 2020, vol. 34, iss. 3, pp. 751–760. https://doi.org/10.2298/FIL2003751L
  17. Hsu K. C., Hwang S. R., Tseng K. L. Some extended Simpson type inequalities and applications. Bulletin of the Iranian Mathematical Society, 2017, vol. 43, iss. 2, pp. 409-425.
  18. Ujevic N. Double integral inequalities of Simpson type and applications. Journal of Applied Mathematics and Computing, 2004, vol. 14, pp. 213–223. https://doi.org/10.1007/BF02936109
  19. Bayraktar B., Napoles J. E. Hermite – Hadamard weighted integral inequalities for (h, m)-convex modified functions. Fractional Differential Calculus, 2022, vol. 12, iss. 2, pp. 235–248. https://doi.org/10.7153/fdc-2022-12-15
  20. Bayraktar B., Napoles J. E. New generalized integral inequalities via (h, m)-convex modified functions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2022, vol. 60, pp. 3–15. https://doi.org/10.35634/2226-3594-2022-60-01
  21. Bayraktar B., Napoles J. E. Integral inequalities for mappings whose derivatives are (h, m, s)- convex modified of second type via Katugampola integrals. Annals of the University of Craiova, Mathematics and Computer Science Series, 2022, vol. 49, iss. 2, pp. 371–383. https://doi.org/10.52846/ami.v49i2.1596
  22. Rainville E. D. Special Functions. New York, Macmillan Co., 1960. 365 p.
  23. D´ıaz R., Pariguan E. On hypergeometric functions and Pochhammer k-symbol. Divulgaciones Matematicas, 2007, vol. 15, iss. 2, pp. 179–192. https://doi.org/10.48550/arXiv.math/0405596
  24. Mubeen S., Habibullah G. M. k-fractional integrals and application. International Journal of Contemporary Mathematical Sciences, 2012, vol. 7, iss. 2, pp. 89–94.
  25. Akkurt A. E., Yildirim M., Yildirim H. On some integral inequalities for (k, h)-Riemann – Liouville fractional integral. New Trends in Mathematical Sciences, 2016, vol. 4, iss. 1, pp. 138–146. http://dx.doi.org/10.20852/ntmsci.2016217824
  26. Jarad F., Abdeljawad T., Shah T. On the weighted fractional operators of a function with respect to another function. Fractals, 2020, vol. 28, iss. 8, art. 2040011. http://dx.doi.org/10.1142/S0218348X20400113
  27. Sarikaya M. Z., Ertugral F. On the generalized Hermite – Hadamard inequalities. Annals of the University of Craiova, Mathematics and Computer Science Series, 2020, vol. 47, iss. 1, pp. 193–213. https://doi.org/10.52846/ami.v47i1.1139
  28. Jarad F., Ugurlu U., Abdeljawad T., Baleanu D. On a new class of fractional operators. Advances in Difference Equations, 2017, vol. 2017, iss. 247, pp. 1–16. https://doi.org/10.1186/s13662-017-1306-z
  29. Khan T. U., Khan M. A. Generalized conformable fractional integral operators. Journal of Computational and Applied Mathematics 2019, vol. 346, pp. 378–389. http://dx.doi.org/10.1016/j.cam.2018.07.018
  30. Ozdemir M. E., Kavurmaci H., Yildiz C. Fractional integral inequalities via s-convex functions. Turkish Journal of Analysis and Number Theory, 2017, vol. 5, iss. 1, pp. 18–22. https://doi.org/10. 48550/arXiv.1201.4915
  31. Dragomir S. S., Agarwal R. P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Applied Mathematics Letters, 1998, vol. 11, iss. 5, pp. 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X
  32. Kirmaci U. S., Bakula M. K., Ozdemir M. E., Pecaric J. Hadamard-type inequalities for s-convex functions. Applied Mathematics and Computation, 2007, vol. 193, iss. 1, pp. 26–35. https://doi.org/10.1016/j.amc.2007.03.030
  33. Pearce C. E. M., Pecaric J. Inequalities for differentiable mappings with application to special means and quadrature formulae. Applied Mathematics Letters, 2000, vol. 13, pp. 51–55. https://doi.org/10.1016/S0893-9659(99)00164-0
  34. Hudzik H., Maligranda L. Some remarks on s-convex functions. Aequationes Mathematicae, 1994, vol. 48, iss. 1, pp. 100–111. https://doi.org/10.1007/BF01837981
  35. Wu S., Iqbal S., Aamir M., Samraiz M., Younus A. On some Hermite – Hadamard inequalities involving k-fractional operators. Journal of Inequalities and Applications, 2021, vol. 2021, iss. 32. https://doi.org/10.1186/s13660-020-02527-1
  36. Aljaaidia T. A., Pachpatte D. New generalization of reverse Minkowski’s inequality for fractional integral. Advances in the Theory of Nonlinear Analysis and its Applications, 2021, vol. 5, iss. 1, pp. 72–81. https://doi.org/10.31197/atnaa.756605
Received: 
28.03.2023
Accepted: 
10.10.2023
Published: 
31.05.2024