Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Starovoitov E. I., Leonenko D. V. Thermal force resonant loading of a three-layer plate. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2025, vol. 25, iss. 3, pp. 406-418. DOI: 10.18500/1816-9791-2025-25-3-406-418, EDN: OFVTQE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
29.08.2025
Full text:
(downloads: 754)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.374
EDN: 
OFVTQE

Thermal force resonant loading of a three-layer plate

Autors: 
Starovoitov Eduard Ivanovich, Belarusian State University of Transport
Leonenko Denis V., Belarusian State University of Transport
Abstract: 

The effect of thermal shock on forced vibrations of a circular three-layer plate excited by a resonant load is investigated. The plate is asymmetrical in thickness, thermally insulated on the lower surface and contour. The distribution of the non-stationary temperature over the thickness of the plate is calculated using an approximate formula obtained as a result of solving the problem of thermal conductivity by averaging the thermophysical properties of materials of a three-layer package. In accordance with the Neumann hypothesis, forced oscillations from a resonant load are superimposed on free oscillations caused by heat stroke (instantaneous drop in heat flow). The hypothesis of a broken line is used as a kinematic one: for high-strength thin bearing layers, the Kirchhoff hypothesis; for an incompressible thicker filler, the Timoshenko hypothesis about the straightness and incompressibility of a deformed normal that rotates by some additional angle (relative shift). The formulation of the initial boundary value problem includes differential equations of transverse vibrations of the plate in partial derivatives obtained by the variational method, homogeneous initial conditions and boundary conditions of the spherical support of the contour. The desired functions are plate deflection, relative shear, and radial displacement of the median plane of the filler. The analytical solution of the initial boundary value problem is constructed by decomposing the desired displacements into a series according to a system of proper orthonormal functions. The corresponding calculation formulas and the results of numerical parametric analysis of the dependence of the solution on the intensity and time of exposure to the heat flux, the magnitude of the power load are presented.

Acknowledgments: 
The work was supported by the State Scientific Research Program of the Republic of Belarus “Convergence-2025”.
References: 
  1. Reddy J. N. Mechanics of Laminated Composite Plates and Shells. Theory and Analysis. Boca Raton, CRC Press, 2003. 858 p. DOI: https://doi.org/10.1201/b12409
  2. Zhuravkov M. A., Lyu Yongtao, Starovoitov E. I. Mechanics of Solid Deformable Body. Singapore, Springer, 2023. 317 p. DOI: https://doi.org/10.1007/978-981-19-8410-5, EDN: YECKNS
  3. Carrera E., Fazzolari F. A., Cinefra M. Thermal Stress Analysis of Composite Beams, Plates and Shells: Computational Modelling and Applications. Academic Press, 2016. 440 р.
  4. Aghalovyan L. Asymptotic Theory of Anisotropic Plates and Shells. Singapore, London, World Scientific Publishing, 2015. 376 p.
  5. Starovoitov E. I., Leonenko D. V., Yarovaya A. V. Elastoplastic bending of a sandwich bar on an elastic foundation. International Applied Mechanics, 2007, vol. 43, iss. 4, pp. 451–459. DOI: https://doi.org/10.1007/s10778-007-0042-6, EDN: MCMQPR
  6. Škec L., Jelenić G. Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection. Acta Mechanica, 2014, vol. 225, iss. 2, pp. 523–541. DOI: https://doi.org/10.1007/s00707-013-0972-5
  7. Starovoitov E. I., Leonenko D. V. Bending of an elastic circular three-layer plate in a neutron flux by a local load. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 3, pp. 360–375 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2022-22-3-360-375, EDN: DIDXGQ
  8. Starovoitov E. I., Leonenko D. V. Repeated alternating loading of a elastoplastic three-layer plate in a temperature field. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 1, pp. 60–75 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2021-21-1-60-75, EDN: HAOYOL
  9. Zadeh H. V., Tahani M. Analytical bending analysis of a circular sandwich plate under distributed load. International Journal of Recent Advances in Mechanical Engineering, 2017, vol. 6, iss. 1. DOI: https://doi.org/10.14810/ijmech.2017.6101
  10. Yarovaya A. V. Thermoelastic bending of a sandwich plate on a deformable foundation. International Applied Mechanics, 2006, vol. 42, iss. 2, pp. 206–213. DOI: https://doi.org/10.1007/s10778-006-0078-z, EDN: MCMQPR
  11. Wang Zh., Lu G., Zhu F., Zhao L. Load-carrying capacity of circular sandwich plates at large deflection. Journal of Engineering Mechanics. 2017, vol. 143, iss. 9. DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001243
  12. Paimushin V. N. Theory of moderately large deflections of sandwich shells having a transversely soft core and reinforced along their contour. Mechanics of Composite Materials, 2017, vol. 53, iss. 1, pp. 1–16. DOI: https://doi.org/10.1007/s11029-017-9636-1
  13. Bazhenov V. G., Linnik E. Yu., Nagornykh E. V., Samsonova D. A. Numerical modeling of the processes of deformation and buckling of multilayer shells of revolution under combined quasi-static and dynamic axisymmetric loading with torsion. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 1, pp. 14–27 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2024-24-1-14-27, EDN: DFKLFV
  14. Mikhasev G. I., Altenbach H. Free vibrations of elastic laminated beams, plates and cylindrical shells. In: Thin-walled laminated structures. Advanced Structured Materials, vol. 106. Cham, Springer, 2019, pp. 157–198. DOI: https://doi.org/10.1007/978-3-030-12761-9_4
  15. Gorshkov A. G., Starovoitov É. I., Yarovaya A. V. Harmonic vibrations of a three-layered cylindrical viscoelastoplastic shell. International Applied Mechanics, 2001, vol. 37, iss. 9, pp. 1196–1203. DOI: https://doi.org/10.1023/A:1013290600951, EDN: LGYIHX
  16. Tarlakovskii D. V., Fedotenkov G. V. Two-dimensional nonstationary contact of elastic cylindrical or spherical shells. Journal of Machinery Manufacture and Reliability, 2014, vol. 43, iss. 2, pp. 145-152. DOI: https://doi.org/10.3103/S1052618814010178, EDN: SKRUSB
  17. Zemlyanukhin A. I., Bochkarev A. V., Ratushny A. V., Chernenko A. V. Generalized model of nonlinear elastic foundation and longitudinal waves in cylindrical shells. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 2, pp. 196–204 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2022-22-2-196-204, EDN: EAHYFO
  18. Bakulin V. N., Boitsova D. A., Nedbai A. Ya. Parametric resonance of a three-layered cylindrical composite rib-stiffened shell. Mechanics of Composite Materials, 2021, vol. 57, iss. 5, pp. 623–634. DOI: https://doi.org/10.1007/s11029-021-09984-9, EDN: OWFMTR
  19. Blinkov Yu. A., Mesyanzhin A. V., Mogilevich L. I. Wave occurrences mathematical modeling in two geometrically nonlinear elastic coaxial cylindrical shells, containing viscous incompressible liquid. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, vol. 16, iss. 2, pp. 184–197 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2016-16-2-184-197, EDN: WCNQLF
  20. Lekomtsev S. V., Matveenko V. P. Natural vibration of composite elliptical cylindrical shells filled with fluid. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 1, pp. 71–85 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2024-24-1-71-85, EDN: QFMMAH
  21. Krylova E. Yu. Mathematical model of orthotropic meshed micropolar cylindrical shells oscillations under temperature effects. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 2, pp. 231–244 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2024-24-2-231-244, EDN: VLEBOS
  22. Suvorov Y. M., Tarlakovskii D. V., Fedotenkov G. V. The plane problem of the impact of a rigid body on a half-space modelled by a Cosserat medium. Journal of Applied Mathematics and Mechanics, 2012, vol. 76, iss. 5, pp. 511–518. DOI: https://doi.org/10.1016/j.jappmathmech.2012.11.015, EDN: WQYBID
  23. Dzebisashvili G. T., Smirnov A. L., Filippov S. B. Free vibration frequencies of prismatic thin shells. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 1, pp. 49–56 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2024-24-1-49-56, EDN: BFHZFQ
  24. Kubenko V. D., Pleskachevskii Yu. M., Starovoitov E. I., Leonenko D. V. Natural vibrations of a sandwich beam on an elastic foundation. International Applied Mechanics, 2006, vol. 42, iss. 5, pp. 541–547. DOI: https://doi.org/10.1007/s10778-006-0118-8, EDN: MKSHTX
  25. Fedotenkov G. V., Tarlakovsky D. V., Vahterova Y. А. Identification of non-stationary load upon Timoshenko beam. Lobachevskii Journal of Mathematics, 2019, vol. 40, iss. 4, pp. 439–447. DOI: https://doi.org/10.1134/S1995080219040061, EDN: UGSEFV
  26. Smirnov A. L., Vasiliev G. P. Free vibration frequencies of a circular thin plate with nonlinearly perturbed parameters. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 2, pp. 227–237 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2021-21-2-227-237, EDN: TSGRWC
  27. Ivañez I., Moure M. M., Garcia-Castillo S. K., Sanchez-Saez S. The oblique impact response of composite sandwich plates. Composite Structures, 2015, vol. 133, pp. 1127–1136. DOI: https://doi.org/10.1016/j.compstruct.2015.08.035
  28. Kudin A., Al-Omari M. A. V., Al-Athamneh B. G. M., Al-Athamneh H. K. M. Bending and buckling of circular sandwich plates with the nonlinear elastic core material. International Journal of Mechanical Engineering and Information Technology, 2015, vol. 3, iss. 08, pp. 1487–1493. DOI: https://doi.org/10.18535/ijmeit/v2i8.02
  29. Belostochny G. N., Myltcina O. A. The geometrical irregular plates under the influence of the quick changed on the time coordinate forces and temperature effects. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2015, vol. 15, iss. 4, pp. 442–451 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2015-15-4- 442-451, EDN: KRMOVZ
  30. Paimushin V. N., Gazizullin R. K. Static and monoharmonic acoustic impact on a laminated plate. Mechanics of Composite Materials, 2017, vol. 53, iss. 3, pp. 283–304. DOI: https://doi.org/10.1007/s11029-017-9662-z
  31. Paimushin V. N., Firsov V. A., Shishkin V. M. Modeling the dynamic response of a carbon-fiber-reinforced plate at resonance vibrations considering the internal friction in the material and the external aerodynamic damping. Mechanics of Composite Materials, 2017, vol. 53, iss. 4, pp. 425-440. DOI: https://doi.org/10.1007/s11029-017-9673-9
  32. Grover N., Singh B. N., Maiti D. K. An inverse trigonometric shear deformation theory for supersonic flutter characteristics of multilayered composite plates. Aerospace Science and Technology, 2016, iss. 52, pp. 41–51. DOI: https://doi.org/10.1016/j.ast.2016.02.017
  33. Starovoitov E. I., Leonenko D. V. Vibrations of circular composite plates on an elastic foundation under the action of local loads. Mechanics of Composite Materials, 2016, vol. 52, iss. 5, pp. 665–672. DOI: https://doi.org/10.1007/s11029-016-9615-y, EDN: YXHNYN
  34. Kondratov D. V., Mogilevich L. I., Popov V. S., Popova A. A. Hydroelastic oscillations of a circular plate, resting on Winkler foundation. Journal of Physics: Conference Series, 2018, vol. 944, art. 012057. DOI: https://doi.org/10.1088/1742-6596/944/1/012057
  35. Bykova T. V., Grushenkova E. D., Popov V. S., Popova A. A. Hydroelastic response of a sandwich plate possessing a compressible core and interacting with a rigid die via a viscous fluid layer. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, vol. 20, iss. 3, pp. 351-366 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2020-20-3-351-366, EDN: ECKRZN
  36. Ageev R. V., Mogilevich L. I., Popov V. S. Vibrations of the walls of a slot channel with a viscous f luid formed by three-layer and solid disks. Journal of Machinery Manufacture and Reliability, 2014, vol. 43, iss. 1, pp. 1–8. DOI: https://doi.org/10.3103/S1052618814010026, EDN: WQYYKN
  37. Pradhan M., Dash P. R., Pradhan P. K. Static and dynamic stability analysis of an asymmetric sandwich beam resting on a variable Pasternak foundation subjected to thermal gradient. Meccanica, 2016, vol. 51, iss. 3, pp. 725–739. DOI: https://doi.org/10.1007/s11012-015-0229-6
  38. Starovoitov E. I., Leonenko D. V. Forced oscillations of a three-layer plate in an unsteady temperature field. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 1, pp. 123–137 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2024-24-1-123-137, EDN: TMUGDP
Received: 
18.07.2024
Accepted: 
05.10.2024
Published: 
29.08.2025