Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Galaev S. V. Almost Contact Metric Spaces with N-connection. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2015, vol. 15, iss. 3, pp. 258-263. DOI: 10.18500/1816-9791-2015-15-3-258-264, EDN: UKIVDR

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
11.09.2015
Full text:
(downloads: 162)
Language: 
Russian
Heading: 
UDC: 
514.76
EDN: 
UKIVDR

Almost Contact Metric Spaces with N-connection

Autors: 
Galaev Sergei Vasil'evich, Saratov State University
Abstract: 

On a manifold with an almost contact metric structure (ϕ, ~ξ, η, g,X,D) and an endomorphism N : D → D, a notion of the N-connection is introduced. The conditions under which an N-connection is compatible with an almost contact metric structure ∇Nη = ∇Ng = ∇N~ξ = 0 are found. The relations between the Levi – Civita connection, the Schouten – van-Kampen connection and the N-connection are investigated. Using the N-connection the conditions under which an almost contact metric structure is an almost contact Kahlerian structure are investigated.

References: 
  1. Cartan E. Sur les varietes a connexion affine et la theorie de la relative generalines. Pt. I // Ann. Sci. Ecole Norm. Sup. 1923. Vol. 40. P. 325–412.
  2. Yano K. On semi-symmetric metric connections // Revue Roumaine de Math. Pures et Appliques. 1970. Vol. 15. P. 1579–1586.
  3. Golab S. On semi-symmetric and quarter-symmetric linear connections // Tensor, N.S. 1975. Vol. 29. P. 249–254.
  4. Schouten J., van Kampen E. Zur Einbettungsund Kr¨ummungstheorie nichtholonomer Gebilde // Math. Ann. 1930. Vol. 103. P. 752–783.
  5. Вагнер В. В. Геометрия (n − 1)-мерного неголономного многообразия в n-мерном пространстве // Тр. Семинара по векторному и тензорному анализу. М. : Изд-во Моск. ун-та, 1941. Вып. 5. С. 173– 255.
  6. Галаев С. В. Почти контактные кэлеровы многообразия постоянной голоморфной секционной кривизны // Изв. вузов. Матем. 2014. № 8. С. 42–52.
  7. Pitis G. Geometry of Kenmotsu manifolds. Brasov : Publishing House of Transilvania University of Brasov, 2007. iv+160 p.
  8. Галаев С. В. Внутренняя геометрия метрических почти контактных многообразий // Изв. Сарат. унта. Нов. сер. Сер. Математика. Механика. Информатика. 2012. Т. 12, вып. 1. С. 16–22.
  9. Bejancu A. Kahler contact distributions // J. Geom. Phys. 2010. Vol. 60, № 12. P. 1958–1967.
  10. Букушева А. В., Галаев С. В. Связности над распределением и геодезические пульверизации // Изв. вузов. Матем. 2013. № 4. С. 1–9.
Received: 
12.04.2015
Accepted: 
28.08.2015
Published: 
30.09.2015